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Propagation of electromagnetic energy and momentum through an absorbing dielectric
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We calculate the energy and momentum densities and currents associated with electromagnetic wave propa-
gation through an absorbing and dispersive diatomic dielectric, which is modeled by a single-resonance Lor-
entz oscillator. The relative and center-of-mass coordinates of the dielectric sublattices and the electromagnetic
field vectors are treated as dynamical variables, while the dielectric loss is modeled by a phenomenological
damping force. The characteristics of the energy propagation agree with previous work, including the form of
the energy velocity. The treatment of momentum propagation extends previous work to lossy media, and it is
found that the damping plays an important role in the transfer of momentum from the electromagnetic field to
the center of mass of the dielectric. We discuss the significances of the momentum, the pseudomomentum, and
their sum, the wave momentum. For each of these quantities we derive the density, the current density, and the
appropriate conservation or continuity equation. The general expressions are illustrated by applications to a
steady-state monochromatic wave and to an excitation in the form of a localized Gaussian pulse. The velocities
associated with propagation of the various kinds of momentum are derived and discussed.
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PACS numbes): 42.25.Bs, 03.40:t, 03.50.De, 41.20.Jb

[. INTRODUCTION where the momentum density is a vector quantity propor-
tional to the energy currenG=S/c?, and the momentum
The nature of electromagnetic energy and the characterigurrent density is a second rank tensor, ot33matrix, re-
tics of its propagation through dielectric media have beerated to the Maxwell stress tensfit,2,9. For the electro-
studied since the early years of electromagnetic theory. Famagnetic momentum in material media, it is necessary to
propagation through the simplest kind of linear, isotropic,take account of contributions from both the electromagnetic
and homogeneous medium, the energy densignd energy field and the dielectric medium. The momentum current in a
current density, or Poynting vect&rare routinely treated in lossless dielectric was obtained by this approach as a modi-
standard text§l,2]. The forms of these energy densities andfied form of the Maxwell stress tensor. In addition, the na-
their conservation law have also been evaluated for muctures of the momentumlike quantities that have been defined
more general dielectric med[&]. For propagation through for the coupled system of electromagnetic field and dielectric
absorbing or scattering materials, the classic treatment ahaterial, including the densities proposed by Abraham and
electromagnetic wave propagation, and particularly the idenMinkowski, were identified 6].
tification of the several distinct velocities that are associated The controversy has always revolved around a linear light
with an optical pulse, was provided by Sommerfeld and Bril-wave for which deformation of the dielectric medium is ir-
louin [4]. The detailed theory for lossy dielectrics is quite relevant, but a key ingredient of its recent resolution is the
complicated, but the main features of the energy density anmhclusion of deformation of the medium. This necessitates
current, and of energy propagation, are correctly predicted bthe use of both spatidEulerian and materialLagrangian
a simple calculatior{5], based on the standard model of coordinates, and it allows the deduction of conservation laws
electromagnetic waves in a Lorentzian dielectric with afrom Noether’s theorem. Thus the momentum conservation
single resonance. The essential feature of this theory is tHaw follows from invariance to displacements of the spatial
inclusion of contributions to the total energy dendityand  coordinategshomogeneity of free spageand the pseudomo-
energy current densit® of the optical excitation from both mentum conservation law follows from invariance to dis-
the electromagnetic field and the dielectric medium. placements of the material coordinat&#®mogeneity of the
It is interesting to determine whether there is an analomaterial medium This approach6] found the electromag-
gous theory for electromagnetic momentum propagation in aetic momentum densité,,, to be etEXB, close to, but in
lossy medium, and this is the primary purpose of the preserdeneral different from, the Abraham forsguoE<XH. It also
paper. Such an inquiry is particularly topical because recerfound the pseudomomentum dens@y, to be PXB plus a
work [6] on dispersive, but lossless, dielectrics has proposedispersive term. Thus the su@ of the momentum and
a resolution of the long-standing Minkowski-Abraham con-pseudomomentum densities, which we call wWave momen-
troversy concerning the correct expressions for the densitiesim, is the generalization of the Minkowski momentum
of electromagnetic momentum and current, denoted here bpXB to include dispersion. However, the Minkowski mo-
G andT, respectivelyse€[7,8] for reviews. These densities mentum was proposed as being the ordinary momentum,
are well understood for electromagnetic fields in free spacewhile this derivation shows instead that it is the sum of or-
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dinary momentum and pseudomomentum. The name “wave

momentum” was introduced for this reason. VXE=-—, 2.3
While the inclusion of material deformation has played an

essential role in the clarification of what is momentum and 1 JE

what is pseudomomentum, it also acts as a barrier to simple — VXB=j+eq—, (2.9

physical understanding. The aim of the present paper is thus Mo ot

to find simplified versions of the conservation laws for mo- ] ] . ]

mentum and pseudomomentum, even after generalization ¥fhere the fields are functions of position and time,

previous work to include loss. This is achieved by the sim-E=E(r.t), and so on. The bound charge and current densi-

plification of the dielectric to a nonmagnetic diatomic crystalti€s, p andj, respectively, are also functions of position and

with cubic isotropy, essentially the single-resonance Lorent3iMe; they can be expressed in terms of the dielectric polar-

model. The ions are assumed to be coupled to the electrdzationP as

magnetic field only by an electric-dipole interaction.

Before proceeding to the main calculations, we present a p=—V-P 2.9
simplified discussion of energy and momentum propagation
in Sec. Il. An improved version of previous calculations of and
the energy continuity equations and the velocity of energy P
propagation5] leads to essentially the same results as be- j=—. (2.6)
fore, but our method facilitates parallel discussions of the ot

momentum propagation characteristics. It is found, however, o ] . )

that the propagation of momentum involves both the centefl € electric displacement is defined in the usual way,
of mass and relative coordinates of the diatomic dielectric,
whose proper treatment requires a Lagrangian formulation. D=goE+P, 2.7)
Thus it is shown in Sec. Ill that the momentum density and e
current obey a conservation law when the center-of-mas@nd the magnetic field is given by
momentum is included, but that the pseudomomentum, and
hence the wave momentum, suffer dissipation on account of
the dielectric loss. The various electromagnetic densities d%ilote that in the view implicit in these equatiosandB are

rived in Secs. Il and Il are evaluated for a steady—state[he fundamental electromagnetic fields, whildescribes the

monochrpmaﬂc wave in Sec. IV, where the veloc_ltles ofr sponse of the matter, and E®.7) and (2.8) are constitu-
propagation of energy and wave momentum are derived, angl equations foD andH

for an optical pulse in Sec. V. The results are discussed in We consider a polar, diatomic, cubic, crystal lattice in

H=B/pu,. (2.9

Sec. V1. which the relative spatial displacement field of the two ions
in the unit cell is denoted=s(r,t). The long-wavelength
Il. SIMPLE THEORY OF ELECTROMAGNETIC ENERGY optic modes of vibration have a basic threefold degeneracy

AND MOMENTUM PROPAGATION which is lifted by the long-range electrical forces to form a
o o twofold-degenerate transverse mode and a nondegenerate
The present section is devoted to a derivation of SOMesngitudinal mode[10]. Then, if the frequency of the trans-
basic results for electromagnetic fields in a dielectric materiay,erse mode is denoted; and its damping rate is denot&d
treated in the Lorentz model. We present a simple derivatiogne standard form of the Lorentz equation for title Carte-

of the equations that describe the propagation of energy, angan component of the internal coordinate of the ionic motion
show that the corresponding description of momentumg

propagation cannot be obtained by so simple a theory. The

detailed derivations of the equations that describe momen- m§+mI's; +mw?s,=sE; . (2.9
tum propagation and the identification of the different char-

acters of the momentumlike contributions are given carefubjere m is the reduced mass density of the two ions, of

consideration in Sec. Il. massesM; andM,, in the primitive unit cell of volume),
A. Basic equations m= MM, (2.10
Q(M1+My) '

The fundamental energy and momentum properties of
electromagnetic fields in matter are governed by Maxwell's

) ; : he ch i i ith the i I i

equations and by the equations of motion for the matter. W%ngi\te?l (l:)yarge densityassociated with the internal motion
consider a honmagnetic dielectric material that has no free
charges or currents. The Maxwell-Lorentz forms of the equa- s=elQ 2.11)

tions in conventional notation and Syste Internationa(Sl)

units are then wheree and —e are the charges on the two kinds of ion. The
V.E=pls,, 2.1) polarization is expressed in terms of the internal coordinate

by
V.B=0, (2.2) P=ss. (2.12
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B. Energy propagation ) ) BjBi B2
The flow of electromagnetic energy through the dielectric (Temji =~ 20E i +280879; “o * 210 i
is determined by the energy current density, or Poynting vec- (2.20

tor, given by
This quantity is usually identified as the negative of the Max-

Sem=EX B/ ug (2.13  well stress tensof1,2], but occasionally as the Maxwell
o i i ) _ stress tensd9]. The momentum continuity equation for the
for the cubic isotropic material assumed here. It is Stra'ghtelectromagnetic field is obtained from Maxwell’s equations

forward to show with the use of Eq&.3) and(2.4) that by forming the vector products af,E with Eq. (2.1), B/uq
J J with Eq. (2.2), E with Eq. (2.3, andB with Eq. (2.4), and
— (Sem)i+ = Wem=—E-j, (2.14  then adding the four equations. The result after use of stan-
ar; ot dard vector operator identities is
where the repeated indexis summed over the Cartesian P
coordinates, y, andz, and ar, (Temji + r (Gemj=—pE;—(jXB)=—Fj,
Wenm=380E2+ 3 uoH? (2.15 (2.21)

is the usual electromagnetic energy density. Equatiohy ~ Where

expresses the continuity of the electromagnetic energy, and

the term on the right represents the rate of loss of energy

from the field by transfer to the dielectric.
Multiplication of (2.9) by s; gives

Gem=£0EXB (2.22

is the electromagnetic momentum density. Equati®21)
expresses continuity of electromagnetic momentum. The
terms on the right represent the rate of loss of momentum
from the field by transfer to the dielectric, in the form of
where Egs.(2.6) and (2.12 have been used, similar to a minus the usual Lorentz force density, denokgd

calculation in[4]. The rate of loss on the right of the elec-  The transfer of momentum from the electromagnetic field
tromagnetic energy continuity equati@f.14 is thus bal- implies that the dielectric as a whole is set into motion. The
anced by the rate of gain of energy represented by the terifiternal relative displacement fieklis itself invariant under

on the right of Eq(2.16) for the dielectric lattice mode. The a uniform displacement of the crystal, and cannot therefore
sum of Egs(2.14 and(2.16) can be written in the form of carry momentum. The dielectric momentum is carried by the
an energy continuity equation for the coupled electromagmotion of the spatial displacement fieR=R(r t) defined by

m"S.Si+mF.Si2+mw$—Si.Si:§Ei.Si:E'j, (21@

netic field and dielectric lattice, the position of the center of mass of the two ions in the unit
cell. A treatment of the propagation of momentum through
S  IW 5 the dielectric thus requires a theoretical framework that in-

ar, + ot mI's®, (217 cludes both the relative and center-of-mass coordirsaesi
R; this is provided by the Lagrangian formalism presented in

where the total-energy current density Sec. lll.

The effect of the dissipation term in the internal equation
S=Sem=EXB/ 0 (218 of motion (2.9 is to remove energy from the optic modes of

vibration. The sink for this energy is provided by a reservoir,
whose nature is determined by the microscopic mechanism
of the dissipation. For example, anharmonic forces in the
W= 1{eoE2+ poH2+ m&+ maw2s?). (2.19 lattice transfer the optic-mode energy into continuous distri-
butions of other vibrational modes which are not directly
The excitation of the dielectric lattice, that is of the Lorent- coupled to the electromagnetic field. Thus an initial excita-
zian oscillator or optic mode, thus makes no explicit contri-tion of the coupled electromagnetic field and optic modes
bution to the energy current density. The lattice doesdecays to a steady state in which all of the energy is trans-
though, have an implicit effect via the scaling of the ratio of ferred to the reservoir. This transfer has implications for both
the magnetic and electric fields by the complex refractivehe momentum and the kinetic energy associated with the
index of the mediunjsee Eq.(4.10]. However, the energy motion of the dielectric crystal.
density explicitly contains the kinetic and potential energies Suppose that the initial excitation hasquanta of wave
of the optic vibrational mode in addition to the electromag-vectork and frequencyv per unit volume. The magnitude of
netic energy density2.15. The term on the right of Eq. the momentum density acquired by the dielectric crystal as a
(2.17 represents the rate of loss of energy density from thavhole, when all of the energy has been transferred to the
coupled field-lattice system by the optic mode damping. ~ reservoir, is

is the same as the electromagnetic current de@ify3, but
the total energy density is

C. Momentum propagation MR=N7k=N~w/c, (2.23

The flow of electromagnetic momentum is determined bywhereM is the dielectric mass density,
the momentum current density, whose components are given
by [1,2,6,9,10 M=(M;+My)/Q, (2.29
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and the relation between the frequency and wave vector has L=j-A—pdo, (3.5

been taken in its free-space form, for the purpose of an order-

of-magnitude estimate. Clearly it is important to include thewhere the charge and current densities are related to the di-

center-of-mass momentum of the crystal in any theory oklectric polarization by Eq€2.5 and(2.6). However, when

momentum propagation through an absorbing dielectric.  the center-of-mass motion is included, the latter expression
The transfer of momentum to the dielectric must be acshould be augmented by inclusion of theriRgen current

companied by a growth in its kinetic energy density, whosq11], to give a total current density

value for the momentum density given by Eg8.23 is

P -
5 =Nt w M2 (2.29
whereR is again the continuum center-of-mass coordinate.
The rest-mass energy densiyc? of the crystal is always The interaction Lagrangian densit@.5 can be converted
very much larger than the initial energy densiyiw. The  with the use of this expression to
crystal kinetic energy is thus completely negligible compared ,
to NAw. This justifies the neglect of center-of-mass motion L,=P-(E+RXB), (3.7
in the theory of energy propagation given in Sec. Il B, de-
spite its importance in the theory of momentum propagationwhere some perfect space and time derivative terms, which
make no contribution to the Lagrange equations of motion,
Il LAGRANGIAN THEORY OF ELECTROMAGNETIC have been discarddd0]. The material Lagrangian density

MOMENTUM PROPAGATION for a rigid body is

This section is devoted to a rigorous derivation of the Ly=3iMR?+ ims?— i mwis, (3.9
various momentum densities associated with the propagation
of electromagnetic waves through absorbing dielectrics. Thevhere the dielectric parameters are as defined in Sec. Il. The
basic dielectric model is the same as that used in Sec. Il, buheory also needs to include a term that allows for damping
it is necessary to generalize the model to include center-ofef the internal motion at a rate proportional Io This is
mass motion in order to describe momentum propagation. ikonveniently implemented by a Rayleigh dissipation func-
is also necessary to distinguish the contributions of momention of the form
tum and pseudomomentum. The continuum mechanics back-
ground to the calculations is described in detail in R€]. R=1mlrs, (3.9
It is assumed throughout that the dielectric material fills all
of Space; the effects of CI‘yStal boundaries are excluded fI’OI“WhiCh is incorporated into the Eu'er_l_agrange equations by
the calculations. an appropriate additional terfd2].

The equations of motion for the electromagnetic and ma-
A. Lagrangian formulation terial field variables are obtained by the standard Lagrangian
procedures. Thus the Maxwell-Lorentz equatid@sl) and
(2.4) are rederived straightforwardly, while Eg&.2) and
(2.3 are satisfied automatically from the definitio(.3)
and (3.4) of the fields in terms of the potentials. It should
L=Ly+ L+ Le, (3.1)  however be noted that the Rigen term in the current den-
sity (3.6) causes a generalization of relatiG2.8) between

where the Lagrangian itself is formed by integration over themagnetic field and magnetic induction [teee, for example,

The system of dielectric materiaM) and electromag-
netic field (F) coupled by an electric-dipole interactiob) (s
described by a Lagrangian density

Lagrangian density in the usual way. Eq. (76.1)) of Ref.[2]]
The Lagrangian density of the electromagnetic field is
B :
H=—-PXR. (3.10
_g0, 1 Mo
Le= 5 E T B4, (3.2

The new term is a function of both the internal relative-
where the electric and magnetic fields are determined by thdisplacement coordinate and the center-of-mass coordinate
scalar potentiakp and the vector potentiah in the usual of the dielectric material.

way, For the dielectric spatial displacement variables, the equa-
tion of motion for the relative position of the two ions in the
dA unit cell is obtained with the use of Eq8.7)—(3.9) as
E=—-V¢- 3 (3.3

m"s+mF'Si+mw$Si=g(Ei+(ll?><B)i), (311)
and
which is identical to Eq(2.9) except for the addition of the
B=VXA. (3.4  term proportional to the center-of-mass veloc® The
equation of motion for the continuum center-of-mass coordi-
The interaction Lagrangian density is nate is obtained similarly as
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. d : with the same magnitude as the center-of-mass kinetic en-
MR;—ss; -~ (Ei+(RXB)))—s gt (8%B);=0. ergy has been omitted from the momentum current density
! (3.19 in accordance with the discussion that follows Eq.
(3.12 (2.25
A more convenient form of this equation is found after con- It should be noted that the equation of motigll) for
siderable manipulatiofi.0], using Eqg.2.2), (2.5 and(3.6),  the internal coordinate plays no role in the above derivation,
to be on account of the inability of the relative coordinate to carry
5 momentun(6]. As the dissipation described by E§.9) acts
- : B . . only on the internal coordinate, the absence of this coordi-
MR; - ar. {s(Ej+(RXB)))si} =pE;+(jxB);=F;. nate from the derivation of Eq$3.14—(3.16 accounts for
(3.13  the lack of damping terms in these results. The fulfilment of
o - momentum conservation in the presence of energy dissipa-
The significances of the terms on the left are clarified bytion, as described by the term on the right-hand side of Eq.
their contributions to the momentum densities defined in Seq.2_17), is of course a common occurrence in mechanics.
Il B below. . _ _ o The momentum densit{8.16) is clearly separated into a
As discussed in connection with E.25, the kinetic  contributionM R from the center-of-mass motion and a con-
energy of the dielectric is negligible compared to the energyyipytion &,ExB from the electromagnetic field. The latter
densities associated with the electromagnetic field and thgiffers from the Abraham forneuoExH on account of the
optic mode vibration of the lattice. The contribution of the yaneralized relatiori3.10 between the magnetic field and
center-of-mass motion to the Lorentz force on the right-hanghe induction. It is seen that, in contrast to the magnetic

side of(3.1]) is also small, a&B is of orderRE/c, which s inquction B, which is purely a property of the electromag-
certainly much smaller thaf. With terms inR removed, the  petic field, the magnetic fielth contains a contribution that
Lagrangian theory reproduces the results of Sec. Il B as Eqyepends on the material internal coordinate containe®. in
(3.11) reduces to Eq(2.9), and the Maxwell equations are The gccurrence oB rather tharH ensures that the electro-

unchanged. The energy continuity equati@l?) and the  pagnetic momentum density is properly independent of any
energy densities given in Eq&2.18 and (2.19 thus con-  material variables.

tinue to hold. The derivations that follow consider the more  Tne total momentum is obtained by integrationG(r ,t)
suptle problems and distinctions associated with the propasyer i space, and this quantity is conserved for a closed
gation of momentum and pseudomomentum through the aksystem with no flow of momentum through its boundaries.
sorbing dielectric. Thus integration of Eq(3.14) over the effectively-infinite

dielectric material gives
B. Momentum conservation

The Ie}w of momentum conser_vation is a consequence of 9 f dr G (r,t)=0, (3.17
the invariance of the laws of physics to arbitrary infinitesimal at

displacements of the spatial coordinates. The momentum is . .
thus defined with respect to the Maxwell equatid@sl)— _prowded thafl (T ) vanishes at=cs. Thg tppal momentum
(2.4) and the center-of-mass equati@13. The continuity is therefore conserved, and only its division between the
eduation(Z.Z]) for the electromagnetic mdmentum, which is €lectromagnetic field and the dielectric center-of-mass mo-
based entirely on Maxwell's equations, therefore remain§Ion changes W'th.t'me as, for example, in the propagation of
valid. The Lorentz force densitids; on the right-hand sides a pulse of excitation through_the crystal. . .
of Egs.(2.21) and(3.13 are equal and opposite, demonstrat- Although the material motion m_akes an important contri-
ing the action and reaction of the forces between the electrc}gu“:tn r:10 th?r rr:](t)rge?]tl;{n@dleé;silty, 'ti cror|1|tr|t|)ut|ori1n'§o ﬂr1te nTO'
magnetic and material parts of the coupled system. Additio entum curre ensitye. S generally 1ess important.

. : - R husRB is again of ordeRE/c, which is much smaller than
g:‘\/’[gsese equations, using definitiGh 12 of the polarization, E, and, with the corresponding term removed, E&15

reduces to

ﬁiri (Twi+ e (G =0, (314 (Tr)ji =~ EjPi+ (Ten;i (3.18

which is the conservation law for the momentum of the field- C. Pseudomomentum

material system. Here Pseudomomentum has been a much neglected quantity in

continuum mechanics, and a regularly misinterpreted quan-

(Tm)ji= = (B (RXB))Pi+ (Temj (319 tity in quantum mechanics. Quantum-mechanical treatments
is the momentum current density, and of excitations in solids have often calléd the pseudomo-
mentum of an excitation quantum. This was shown to be
G= MR+ Gem (3.1  wrong[6] on the basis of an unambiguous definition of the

pseudomomentum as the momentumlike quantity that is con-
is the momentum density of the coupled field and materialserved by virtue of the homogeneity of the material body.
Expressions for the electromagnetic contributions to the mo- Noether's theorenj10] can be used with a Lagrangian
mentum current density and the momentum density are giveformulation to obtain a rigorous derivation of the pseudomo-
in Egs.(2.20 and(2.22), respectively. A tensor contribution mentum conservation law for a homogeneous body. This is a
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body of infinite, or at least large, extent compared to the D. Wave momentum
interaction volume considered, so that any boundary effects | ;g difficult, if not impossible, to observe the pseudomo-

can be ignored. The invariance_use.d in the application qf thesentum alone. Any interaction in a large homogeneous body
theorem to pseudomomentum is with respect to an arbitrany,q|ves a conserved pseudomomentum but, because the un-
infinitesimal displacement of the material coordinates of 8derlying vacuum space is also homogeneous, the interaction

point that moves with the dielectric. This is completely jn\olves a conserved momentum as well. As similar quanti-
analogous to the arbitrary infinitesimal displacement of thg;oq \ith identical dimensions, it is not surprising that the

spatial coordinates, namely, the position of a point with réyngmentum and pseudomomentum should combine together
spect to the free-space vacuum, which is used with Noether

M summation to form the wave momentum. Such a summa-

theorem to obtain the momentum conservation law. Based Ofy, is valid when the deformation of the material body is
these definitions, it has been prov] thatzk is a quantum  pegiigiply small. Thus the experiments of Jones and co-

of the wave momentum, that is, of the sum of momentumy,rkers[13] on liquid dielectrics and of Gibsoet al. [14]
and pseudomomentum. The pseudomomentum conservatiop semiconductors observed momentum transfers propor-

law derived below follows directly from the equations of (i5nq) 1o the refractive index, in agreement with the form of
motion, without the use of Noether’s theorem. However, No+ha unit of wave momenturfik in a nonabsorbing medium.

ether’s theorem relates the conservation law to the invariance The wave momentum current density and momentum

property that gives rise to it and thus provides a firm identi-yensity are denote@ and G, respectively. Dielectric defor-

fication of the conserved quantity. , mation is negligible in the vicinity of the optic mode fre-
The pseudomomentum of the system considered here |5,ancy and we may add the momentum conservation equa-

not in fact a conserved quantity, because of the loss introg,, (3.14 to the pseudomomentum continuity equation

duced by the optic mode damping. The conservation equ33 19, to form the wave momentum continuity equation
tion is thus replaced by a continuity equation. To find it from

the equations of motion, we need to combine only the inter- aT }
nal coordinate equatiof8.11) and the versior{3.12 of the o T WZmFS' ET (3.23
center-of-mass continuum equation, that is, the material ' !

equations. The electromagnetic field equations, which essen-

. . . Ién this relation, the expression far; is obtained by addition
tially describe vacuum-based rather than matenal-baseOf the approximation€3.189 and(s’J 29 for small center-of-
guantities, do not contribute. Thus addition of E§.11), bp . ’ ’

after multiplication byds;/dr;, to Eq.(3.12 gives a result mass velocity R<c) as
that can be written in the form of the continuity equation

. BB, B?
E(Tpsm)ji—’_m(c;psm)jzmrs . E' (3.19 _
' j +3(MS—meis’+E-P)§; (3.29

where ) ) ) .
and the expression foB; is obtained by addition of the

. : eneral result$3.16 and(3.21) as

(3.20 95
is the pseudomomentum current density, with a term of the r;
same magnitude as the center-of-mass kinetic energy again
neglected. The pseudomomentum density is given by whereD is the electric displacement defined in E2.7). It is
seen that the center-of-mass momentum cancels in the for-
: . 9s mation of the wave momentum. The term on the right of Eq.
(Gpsm)j = ~MRj—ms: ——+(PXB);. (3.2)  (3.23 represents the rate of loss of wave momentum from
y the coupled field-lattice system caused by the optic mode
damping.

The term on the right-hand side of E®.19 represents the
rate of loss of pseudomomentum caused by damping of th]eor
optic mode. The total time derivative occurs in accordance-t fi

with the role ofG,qy as a momentum defined relative to the their cycle-averaged contributions vanish in the examples of

moving medium. . o monochromatic and pulsed excitations of the system consid-
The pseudomomentum current density simplifies when

the term that includes the center-of-mass velogttys ne- (rar:gl(“jnlenntsuenfsde!\r{s?try]g ;/é)ri?&?ts“:r(nbeezslti?&ierho?/vvva?iV:x-
glected, and Eq(3.20 reduces to :

pression plus a dispersive term. However, the Minkowski
) momentum was proposed as an expression for the momen-
(Tpsmji=13 M($*— wFs?)+E-P}5;; . (322 tum, not for the sum of momentum and pseudomomentum as
embodied in the wave momentum. It is seen from the above
However, the center-of-mass term in the pseudomomenturaxpressions that, unlike the energy densiti@sld and
density(3.21) is comparable to the other terms, and it must(2.19, neither the momentum current densi8/24 nor the
be retained. momentum density3.25 separates into distinct electromag-

The first four terms in the current densit§.24) have the
m of the negative of the Maxwell stress tensor in a dielec-
¢ [1]. The remaining bracketted terms are additional, but
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netic and material contributions, as the polarizat®nex- A. Dielectric function
pressed in the form2.12), is a material variable.

The final results(3.23—(3.25 can also be obtained di-
rectly from the simple theory of Sec. Il. Thus multiplication
of Eq. (2.9) by dsi/dr; gives

Consider a plane wave of frequeneyand wave vectok
that is propagated parallel to tlzeaxis with its electric and
magnetic vectors oriented in the directions of thandy
axes, respectively. The real electric field is written conven-
tionally as a sum of positive- and negative-frequency contri-

. 0 Tl s o2 as; E P (3.26 butions,
ms§ F mi's; F Mw+S; PPl .
ar; arj an; o E(zt)=E*(z,)+E (z,1)
where Eq.(2.12 has been used. Subtraction of H§.26) =E"(0)exp —iwt+ikz) +E™ (w)expiwt—ikz).
from Eq. (2.2 gives 4.1

J 12 2.2 JP Here E™(w) is the complex amplitude a=0, t=0,
a_ri{(Tem)ji—’_E m(s“— w1s )5ji}+ E- o

j E™(0)=[E" ()], (4.2)
+ i{(G )i —ms: s +pE +(jXB);=ml's E_ and a similar notation is used for the other fields. The am-
ot~ o™ ar; ! ) ar; plitude of the field az=0 is assumed to be time indepen-

(3.27) dent, and the model therefore provides for a constant supply
of energy at the coordinate origin. It is emphasized that the
dielectric material is still assumed to fill all of space, and the
boundary condition az=0 does not imply the existence of
any real boundary.

It follows from Eq. (2.9) that

It is not difficult to show with the use of Eq$2.3), (2.5),
(2.6) and standard vector operator identities that

oP J J
E- —+pE +(jXB)i== (PXB);+ — (E-P) E(w)/m
arj ot o, & ()= o )m_ 4.3
wr— o —iel
N r9_f. (EjPy). (3.28 The electric displacemend(w) and the dielectric function
e(w) are defined by
Thus Eq.(3.27) can be written in the form of the continuity D (0)=e0e(®)E (0)=£oE; (0)+ P (w), (4.4

equation(3.23 with the same definition3.24) and(3.25 of

the wave momentum densities. However, in contrast to thigind use of Eqs(2.12 and(4.3) leads to the explicit expres-
direct derivation, the Lagrangian formulation establishes thgjgn

nature of the wave momentum. Its two distinct contributions,

arising from the conserved momentum and the dissipating 52 1
pseudomomentum, are unambiguously identified. Their sepa- e(w)=1+ goM w2— w—iwl (4.9
rate conservation and continuity properties are expressed by T
Egs.(3.14 and(3.19 respectively. The refractive indexy(w) and extinction coefficienk(w)
are defined in the usual way by
IV. MONOCHROMATIC WAVE (@) =[ (o) +ik(w)]? (4.6)
No assumptions have so far been made about the tim .
dependencespof the fields. We now evaluate the various der%]d it follows from Eq.(4.5) that
sities that have been derived in the previous two sections for §2 02— @2
the simple example of a monochromatic plane wave. The 7(w)?—k(w)?=1+ > T2 5 (4.7)
cycle averages of the various energy and momentum densi- eoM (07~ %) "+ o T
ties associated with the electromagnetic fields and the inter-
nal motion of the crystal lattice are all independent of theand
time in this example, and they have exponentially decaying 2 ol
spatial dependences. The electromagnetic and internal parts 27(w)k(w)= 4.9

2 2\2 2r2-
of the system are thus subjected to a steady-state excitation, oM (07~ 09"+ 0T

and the monochromatic case usefully displays the full fre- o .
.- The wave vector is given by the usual expression,

guency dependences of the energy and momentum densities.

However, the constant supply of electromagnetic energy, k=[7(w)+ik(w)]w/c (4.9

which maintains the steady state, results in a center-of-mass

momentum density that grows linearly with the time, pro-and the complex magnetic and electric field amplitudes are

vided that the velocity remains nonrelativistic. The resultsrelated by

derived in the present section are valid for arbitrarily strong

damping. B (w)=[7(w)+ik(w)]E*(w)/c. (4.10
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It is convenient to simplify the expressions that occur in 1
the remainder of the section by removal of explisitiepen-
dence from the notation for the dielectric properties and field 0.8
amplitudes.
0.6
) v,/c
B. Energy propagation 0.4

The total-energy current densit®.18 has only a nonzero
z component for the geometry assumed here, and its cycle 0.

N

average is !
[}

o} el ]

(S)=2gqCn|E"|%e 20xC=2¢gcy|E* |2~ L, 0 0.5 1 1.5 2 2.5

(4.10 w/oy
where FIG. 1. Frequency dependence of the energy velddity6 for
the dielectric function4.5 with s¥egmw%=0.136; this gives the
L=c/2wk (4.12 ratio of longitudinal to transverse optic mode frequencies

o /w1=1.066 found in GaAs. The curves are labeled with the ap-

is the attenuation length, the distance after which the intenPropriate values of /oy .
sity of an electromagnetic wave in the dielectric decays to

1/e of its initial value. The total-energy densit2.19 has a 1 1 1
cycle average v vy T (4.17)
wWnNK
(W)=260| ?+ = )|E+|2e‘Z’L, (413  Where
vp=Cl7, (4.18

and we note that it is not possible to express this quantity

entirely in terms of macroscopic electromagnetic functionsjs the phase velocity. Figure 1 shows the frequency depen-

independent of the parameters of the optic mode. These exience of the energy velocity in the vicinity of the transverse

pressions for the total energy densities agree with a previougsonance for several values of the damping.

derivation[5]. The cycle average of the energy dissipation  Although derived for a specific model, relati¢h.17) be-

rate on the right of Eq(2.17) is tween energy and phase velocities, decay length and damp-

ing rate is found to apply to a wide range of systems, includ-

P— ing the propagation of pulsed optical signals through

[ET e dielectrics in regions of resonant absorptidrb,16 and in
(4.14 regions of resonant amplificatigd7], self-induced transpar-

ency in two-level atom§18], and energy transport in media
The cycle average of the energy continuity equationcontaining randomly distributed scattergt9]. A similar re-

. 2eqC
—(mI's?)=—4gqwyk|E"|%e 7t =— —E U

(2.17 takes the form lation is also valid for the propagation of ultrasonic signals
[20]. Each of these systems has a detailed theoretical treat-

XS,) S ment for the relevant attenuation or amplification process,
9z —(mI's%), (4.19  but the derived and measured propagation velocities gener-

ally agree with the common form of energy velocity given

and it is readily verified from Eq€4.11), (4.12 and(4.14) by Eq.(4.17.
that this relation is indeed satisfied. The energy that is con-
stantly supplied az=0 in the example considered here C. Momentum propagation

steadily drains into the reservoir associated with the dissipa- \omentumThe momentum current density given by Egs.

tion, until none is left for propagation distances L. The (3.18 and (2.20 has three nonzero components for the ge-

kinetic energy delivered to the dielectric material also 9rowSometry assumed here. The two transverse components have
steadily in this example, but the material velocity is assume‘?:ycle-averaged values

to be always sufficiently small that the accumulated kinetic

energy is negligible. (T =eo(1— 7?+3kH)|E*|2e"?L  (4.19
Just as the ratio of the values(®,) and{W) in a lossless

dielectric gives the ray or energy veloc[ti0], so the ratio of gnd

the energy densities is taken to define the velooityof

energy transport through the absorbing dielectric as (Tm)yy) =e0(1- 72— K?)|E*|2e" 7L, (4.20

v :@: c 4.16 The cycle-averaged longitudinal component is
¢ (W) 7+wkIT)’ '
(T2 =((Tem 2 =£0(1+ 7>+ k?)[EF[?e7 7",
This can be rearranged in the form (4.22
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The momentum density is given by E48.16 and(2.22, The cycle average of the pseudomomentum dissipation rate
and only thez component is nonzero, with the cycle- that appears on the right-hand side of E8§.19 also has

averaged value only thez component
: : 2¢ . ds 4eqwn’K N
((G)2) =(MRy)+((Gemlz) = (MR + =7 [E* &7, <mrs5> = ——— [E"]%e "
(4.22 5
o , :—ZSL”|E+|2e—Z’L. (4.29
The cycle averages of the continuity equati@?1) for L

the electromagnetic momentum and of the conservation o
equation(3.14 for the momentum lead to the equalities ~ The cycle average of the pseudomomentum continuity equa-
tion Eq. (3.19 thus takes the form

d d J .
(Fz>:_£<(Tem)zz>:_E (Tm)z):E<MRZ>
(4.23

for the monochromatic wave excitation considered here. It i€nd this is seen to agree with E¢4.23 and(4.24 when the
readily verified that the explicit expression for the cycle-cycle average$4.26) and(4.28 are substituted.

averaged Lorentz force density, obtained from E421) as Wave momentunThe cycle averages of the various wave
(jB), agrees with that obtained from the momentum currenfnomentum densities are now obtained by summation of the
density component given in E¢4.21). The time dependence Momentum and pseudomomentum contributions, and the re-
of the center-of-mass momentum density is thus obtained b§ults are

integration of Eq.(4.23 as

J a o . ds
o {(Tpsmzd = — (MR =(mI's— ), (4.29

<Txx>:_<Tyy>:280K2|E+|ZeizlL (4.30

(MR,(z,t))=(got/L)(1+ 7°+ x?)|E*|?e” L,

(424 and
and this quantity vanishes in the limit of a lossless dielectric (Tz9=2e07°[E 767" (4.3D
asL —o. The dielectric material is here assumed to be a rigidf
body, and the total momentum transferred to the unit cross”?
sectional area at timé is obtained by integration of Eq.
(4.249 as (G,))=

r the wave momentum current density and

2gq7m
c

20K
( Pt it T”] Ef[e? (432

f dz(MRz(z,t))=sot(1+ 7°+«k?)|ET|2 (425  for the wave momentum density. The cycle average of the
0 wave momentum continuity equatid®.23 takes the form

The material center-of-mass momentum thus grows linearly HT,y) 9s
with the time, as momentum is steadily transferred from field 5 < ml's E> , (4.33
to dielectric. The total momentum transfer vanishes in the

limit of a lossless dielectric, and the apparent nonzero resu
obtained from Eq(4.25 for k—0 is an artifact of the prior

integration over an infinite extent of the medium. The con-
servation law for the momentum density given in 817 a velocity v,,,, of wave momentum transport through the

does not hold for 'the open system cons_|dered here, Whe%‘ﬁ)sorbing dielectric in the direction of tlzeaxis as
there is a steady input of electromagnetic energy and mo-

Ietind it is readily verified from Eqg4.12), (4.28, and(4.3))
that this relation is indeed satisfied.
As with the energy velocity4.16), it is possible to define

mentum.
Pseudomomenturithe pseudomomentum current density vwm:<T“> = 7 ) (4.34
given by Eq.(3.22 is the same for all three diagonal com- (G) 7 +x°+(2wn«/T)

ponents, and its cycle average is . )
This can be rearranged in the form
Tosmi Y =eo(—1+ 72— k2)|ET|2e 7L, i=xy,z
(( psm)n) ol n )| | y(4.2® 1 1 1 21 2

— =t =t —=—4—, 4.3
Vwm VUp LI' cyp ve cCy (4.39

The cycle average of the pseudomomentum density given by

Eq. (3.21) has only thez component with a term additional to expressiad.17) for the energy
velocity. The wave momentum velocity is thus in general
) 2e0m 20K smaller than the energy velocity, and Fig. 2 shows the fre-
((Gpsmz)=—(MRy)+ —— | —1+ 7P+ Ko+ T quency dependence of the difference between the two. The

differences are small for the chosen parameters, but they
X |E*|2e" 7L, (4.27  could be significant for larger damping.
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FIG. 2. Frequency dependence of the difference between wave
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C2
((Tm)zd=20| 1+ | [E7[? (4.41
p
and
280
((Gma)=——[E"[%. (4.42
p

With no motion of the center of mass, it is possible to define
a momentum velocity as

_<<Tm>29_(1+ c2> Vp

M Gmy |\ i 2

(4.43

momentum and energy velocities for the same parameters as Fig. ¥, momentum densities both take their usual free-space

D. Limit of zero damping

It is instructive to consider the forms of the various den-
limit of zero damping
[IT—0,x(w)—0], when the refractive index is obtained from

sities defined above in the

Eq.(4.7) as

9 52 1
N1t
eoM wi—w

. (4.36

Thus, for a lossless dielectric, the cycle-average energy cur-
rent density(4.11) can be simply expressed in terms of the

phase velocity4.18 as

28002
()= [E*I% (4.37)
Up
The group velocity is defined by
c c v, s? 2

vg dw Up C goM (w2— w?)?’

and it is easily verified with the use of Eqgl.7) and (4.8
that

Lt
I'=0

2wk 9 _ c?
r _n&w(wn)_vpvg'

7+

(4.39

The lossless limit of the cycle-average energy dengity3
is thus

values when the phase velocity is set equaktoand the
momentum velocity also becomes equaktto
The pseudomomentum densitigs26) and(4.27) become

1 ¢’
Up

<(Tpsm)zz>:80 |E+|2 (4.49

and

280 C2 12
<(Gpsm)z>:v_(_l+_)|E | ) (4.45
p

Uplg

where the limit given in Eq(4.39 is used in the latter. A
pseudomomentum velocity can thus be defined by

{(Tpsmzd  S—vp vg
Opsm™ <(Gpsm)z> - C2—vgvp 2 (4.49

The pseudomomentum densities both vanish in free space.
The cycle-averaged wave momentum densii#e31) and
(4.32 become

26,C2 (S)
(Toy=—5 [ET[2="2 (4.47)
Up Up
and
2e4C2 wW
(G)= - |E+|2=Q. (4.48
UpUg Up

The cycle-averaged dissipation rai#®28 vanishes in the
limit of zero damping, and the wave momentum velocity
(4.34) reduces, like the energy velocity, to the group velocity

2g,C?
(Wy=—2" |E*|2, (4.40 Vym=Ue=Ug. (4.49
Uplg
This velocity can be expressed in the form
The cycle-averaged dissipation rai.14) of course van-
ishes, and the energy velocif¢.16) becomes the same as (G DV mt{(Cpsm2)Vpsm 450

the group velocity in th_e Ii_mit of zero damping. This is Uwm ((Gm)2) +{(Gpsm2)
shown as thd’=0 curve in Fig. 1.

In the absence of any material boundaries, and hence af a sum of the momentum and pseudomomentum velocities
any reflection of the incident electromagnetic wave, no moweighted by their respective densities. However, although
mentum is transferred from the electromagnetic field to thehe wave momentum velocity has the well-behaved form
center-of-mass motion of a lossless dielectric. TRusan  shown by thel’=0 curve in Fig. 1, the momentum velocity
everywhere be set equal to zero. The cycle-average mome(4.41) diverges at both the transverse and longitudinal fre-
tum densitieg4.21) and(4.22 become quencies while the pseudomomentum velooit46) di-
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verges at the longitudinal frequency and is negative there and

c
at all higher frequencies. The unphysical aspects of these =wono+ (0= w) o (5.9
velocities are discussed in Sec. VI. g

where 7,=7(wo) and the group velocity , is defined in Eq.
V. OPTICAL PULSE (4.38. The extinction coefficient is assumed to have negli-

The example of a constantly sustained monochromatitgIble dispersion around its valug at frequencye,.

wave treated in Sec. IV is somewhat untypical; the energy . Vith these assumptions and approximations, and With
and momentum densities are independent of the time, excegt " by Eq.(4.9), the positive-frequency fiel¢b.1) can be
for the center-of-mass momentum which increases linearlyP!t IN the form

We now consider the more realistic example of a finite op-

i 2,2
tical pulse which is initiated at the origin of coordinates, and + _IE . _ 2| @oKoZ KoZ

ST RN E"(z,t)= ex wp| t +—
left to decay as the dissipation takes effect. It is difficult to 2\mc Up c I
treat the propagation of a general optical pulse. We here ]
choose a Gaussian envelope whose parameters have relative 2ickoz z
magnitudes that are convenient both for evaluation of the I Vg
various integrals that occur in the theory and for illustration

.. . [P s z IZQZ

of the effects of dissipation. Specifically, the frequency XJ d0 exo —i0lt— 2|
spread of the pulse is assumed to be much smaller than its ~Q, Vg ac? |

central frequency, and its spatial length is assumed to be

much smaller than the optical attenuation length of the me- (5.6
dium. The effects of loss are included only in the decay of B . : B .
the optical pulse and in the eventual transfer of its initialWhere \p=Cl7o s the phase velocity, and=w—(, with
momentum to the medium. The results derived in the present

section are thus valid only for weak damping. 2cKoz

Qozwo_ |2 . (57)

A. Gaussian pulse .. . -
As is discussed in the Appendix, we may assume that the

The coordinate axes are as defined in Sec. IV A. The readgcond term on the right of E@5.7) is much smaller than
electric field associated with an optical pulse continues tqne first, and with the inequalit{s.3), the lower limit on the
have the form in the first line of Ed4.1), but its positive-  jntegral in Eq.(5.6) is effectively —. The third and fourth
frequency part is generalized to terms in the first exponent of E¢5.6) are correspondingly
negligible compared to the second term. The positive-
frequency field thus takes the form

. z z c? . z\?
vp/ 2L 12 Vg
(5.8

. 5 5 to a very good approximation. It shows the familiar proper-
E*(z.)= IE_ ox _I (w—wp) ) (5.2 ties of a phase that propagates with the phase velocity, a
' v2c 4c? ' ' magnitude that diminishes with the characteristic attenuation
length A g=cl/wgxy and a peak that propagates with the
wherel is the spatial length of the pulse. Its central fre- group velocity. The corresponding magnetic field is obtained
qguency is assumed to be very much larger than the frequendyom the Maxwell equation(2.3) and, with the various in-
width, equalities assumed above, it takes the approximate form

+ — 1 - + i ;
E"(z,t)= \/ﬂfo do E"(z,w)exp —iwt+ikz),
(5.2

Ef(zt)= E*exp[ —iwg
and the negative-frequency part is given by the complex con-
jugate expression. For a Gaussian pulse, we choose

wo>cll, (5.3 B (z,t)=E*(z,t)/v,. (5.9

and possible numerical values of these and other parametess good approximation to the relative spatial displacement
are considered in the Appendix. It is also assumed that thgeld of the two ions in the primitive cell is obtained from Eq.
refractive index and extinction coefficient satisfy the inequal-2 g) as

ity

7(w)> k(o). (5.9 S+(Z,t)=ﬁ E+(Z,'[). (5.10
The refractive index is assumed to vary slowly over the fre-

guency spread/l, so that it can be expanded arousglas B. Energy propagation

N wn(w)) The cycle-average value of the total-energy current den-
o sity obtained from Eq(2.18 with use of the field$5.8) and
wo (5.9 is

w7(w)=~wen(wo)+ (0= wo)
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z 2c? ( z )2] 2 t 1%2
— +2 golv v
expy — —— t——1 . =TTV 9 g2 -9
(Sp= | p[ Lo 12 vg f dZ(Gem)2) = [E™[%e P{ Lo 802L }

(5.11
The cycle-average energy density is obtained from(Ed4.9

with the use of the field&.8)—(5.10), the low-damping form
(4.36) of the refractive index, and the group veloci#.39

as
28,C? z 2c? z\?
<W>: 0 |E+|28XF{—L———I2—(t——) ]
pVg 0

(5.19

The second term in the exponent can be neglected, as it is of
order 102 for the parameter values given in the Appendix.
The total field momentum is therefore approximately

V2 I
VETE009 |+ 2gvgtito, (5.17)

f dz((Gem)z>:
v - Vp
(5.12
and the transfer of momentum from the electromagnetic field

It is seen that the energy current density and the energy dette the center-of-mass motion is characterized by the time
sity are given by the zero-damping expressions for a monoscalel o/vy, .
chromatic wave, Eqg4.37) and(4.40 respectively, but with The relation(4.23 between the cycle-averaged densities
additional exponential factors that describe the effects of thef the Lorentz force and the various momenta and momen-
damping to lowest order and the Gaussian shape of the pulsem currents is generalized to
envelope. The energy velocity defined as in EQ16) is the
same as the group velocity in the low-damping limit consid-
ered here.

The energy continuity equatio(2.17) is easily verified
for the Gaussian pulse. Thus the left-hand side of the conti-

<Fz>__ —((Temz2 — a9 <( emz) = ot <MRZ>

(5.18

nuity equation obtained with the use of Ed&.11) and
(5.12 is

oS) W)
0z ot

= _4800’07]0K0|E+|2

" z 2c? z\?
ex L—OI—ZtU—g,

(5.13

for the pulse excitation. This equation can in principle be
integrated to determine the time dependence of the center-of-
mass momentum, analogous to E4.24) for the monochro-
matic wave, but the integral cannot be performed analytically
for the Gaussian pulse. However, with the dielectric material
assumed to be in the form of a rigid body, its total momen-
tum at timet is again the main quantity of interest and this
can be calculated by integration of H§.18. More straight-
forwardly, the pulse excitation satisfies the conditions for
validity of Eq. (3.17 and, if the center of mass is stationary

and the same expression is obtained for the right-hand sid® timet=0, the total center-of-mass momentum at titrie

of Eq. (2.17 with the use of Eqs(4.8) and (5.10 in the
low-damping limit.

C. Momentum propagation

Momentum We consider only thez component of the
momentum current density, whose cycle average obtained

from EQs.(3.18 and(2.20 with the use of the field$5.8)

and(5.9 is
(T 22 ={(Tem 22
. z 2c? z\?2
e P £ - |
(5.19

The momentum density obtained from E¢3.16 and(2.22
is

2
=gq

C
1+ —
Ve

p

((Gm)2)=(MR)+((Gem),)

(MRY+ 222 v ? p{ 2 2 Z)]

= — exp — —— -— 1.

“ vy Ly 17 Vg
(5.19

The total field momentum at timieis therefore

simply obtained as

|” dxMRy= [~ da(Gent )~ Ganl 0
_ \/%solvg E*

Cl)p

|2(1_ e_Ugt“—O).

(5.19

Thus, after a time much longer thdny/v,, the center of
mass acquires all of the momentum initially carried by the
electromagnetic field.

PseudomomentunThe cycle average of thez compo-
nent of the pseudomomentum current density is obtained
from Eq. (3.22 with the use of Eqs(2.12 and(5.10 as

2

<(Tpsm)zz>:80 -1+ |E+|2
p

" z 2c? z\? -
ex L_o T t U_g . (6.20
The cycle average of thecomponent of the pseudomomen-

tum density is similarly obtained from E¢B.21), where only
the dominant terms are retained in the derivatives of the rela-
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tive spatial displacement field given by E§.10. Then with  nates, which expresses the homogeneity of space. Similarly,
the use of the explicit expression for the group velocity givenpseudomomentum conservation results from an invariance to

in Eq. (4.38), an arbitrary infinitesimal displacement of the material coor-
) dinates that label a mass point, which expresses the homo-

oy, 280 C ity of the material body. As th ly two f f

((Gpema) = — (MR + = —1||ETP]? geneity of the material body. As there are only two frames o
Up \Uplg reference, there can be only two such conservation laws, and

However, they can be added after each has been specialized
to the interaction under study. It is believed that pseudomo-
The cycle average of the pseudomomentum dissipation ra entum cannot be ob_served alone because underlying every
on the right-hand side of Eq3.19 is omogeneous body lies the homogeneous space, a}nd mo-
mentum and pseudomomentum should be observed in sum-
9s 26,C? 7 2c2 7\2 mation inside a homogeneous body. The sum of the two for
< > |E+|2exp|’ T (t ) ] a light wave in a homogeneous body was shown to have
0 quanta of#k per photon, and for this reason the sum is
(5.22 named wave momentum. This property demonstrates the pri-

Insertion of these expressions into the pseudomomentumary Importance of.wave momentum, becadﬂg often :
continuity equation(3.19 reproduces essentially the same p'Iays'a crucial role in dete'rmlnlng' phase-matching condi-
equation of motion for the center-of-mass momentum dentioNS in wave and quantum interactions.

sity as is found from Eq(5.18). The energy, momentum, and pseudomomentum conserva-

Wave momentunThe cycle averages of the wave momen_tion laws are derived in Secs. Il and 1l of the present paper

tum densities are again obtained by addition of the moment©" @ linear light wave in a homogeneous and isotropic di-

tum and pseudomomentum contributions, and the results afdectric medium with a single group of three dipole-active
optic modes. Optical loss enters through the equation of mo-

c2 z  2c? 7\2 tion for the optic mode. The wave momentum conservation
— |[E"|%exp — —— — | t— — law is found by addition of those for the momentum and
p LO | Ug .
(5.23 pseudomomentum. It is found t_hat the.ene_rgy loss does not
' affect the momentum conservation, a situation frequently en-
countered in mechanics. It does however affect the energy,
and _ gy
pseudomomentum, and wave momentum conservation laws
2e,C? i z 2c? z\2 by adding a loss term and converting the conservation laws
(Gp)= o2 |E*[“exp — 7 : to continuity relations.
pg 0 g (5.24) The momentum conservation law and the three continuity
' relations are examined in Sec. IV for a plane light wave

The cycle-averaged wave momentum dissipation rate i&Sing cycle averaging. This permits analysis of the density,
given by Eq.(5.22, and it is easily verified that these ex- the flow, and, where appropriate, the dissipation of these
pressions satisfy the wave momentum continuity equatio,quantities. A meaningful velocity for a wave is often found
(3.23. The wave momentum velocity defined in E4.34 is  from the ratio of the cycle-averaged flow to the cycle-

the same as the group velocity for the pulse excitation in th@veraged density of a quantity. This is true for the energy,
low-damping limit considered here. where it is called the energy or ray velocity. An interesting

generalization of the energy velocity for the lossy medium is
reproduced in Sec. IV from previous wofk]. The energy
velocity can never exceed the velocity of light in vacuum
A recent study based on a Lagrangian formulation and usbecause of relativity. In the lossless limit this velocity be-
of Noether’s theorem has elucidated the meanings and rel@omes the group velocity. It is worth remarking that the en-
tionships of momentum, pseudomomentum, and wave moergy and group velocities are distinct concepts, and are equal
mentum|[6], but it has led to new questions that we haveonly for systems that conserve energy, momentum, and
attempted to answer in the present work. If optical loss iggseudomomentum. For nonlinear systems, this is only so if
added, how are the conservation laws of the various momenhe cycle-averaged Lagrangian divided by the frequency is
tumlike quantities affected? Can the earlier general results bleeld constant during the differentiation in the calculation of
clarified by restriction to a linear light wave? Can velocitiesthe group velocity10].
of the various momentumlike quantities be defined, inter- The definition of the group velocity on the left of Eqg.
preted, and related to energy, group, and phase velocitie$2.38 remains valid for a lossy medium, with(w) taken to
Some time ago, similar questions posed about energy prophe the real refractive index as in E@.6). The group veloc-
gation[5] were addressed, and these are reconsidered in Sety is not restricted to be smaller than the velocity of light,
II. It is sensible to relate the queries concerning momentumand its most basic interpretation is the velocity of the peak of
and their solutions, to those for the energy. a pulse. This peak velocity has been observed in some re-
The general conclusions of the recent sti@y can be markable experimentf21] to exceed the velocity of light,
briefly summarized. Momentum conservation results, by Nobecome infinite, and then negative, which corresponds to the
ether’s theorem, from an invariance of the laws of physics temergence of the peak of the pulse from a slab before its
an arbitrary infinitesimal displacement of the spatial coordi-entry into it. It has been show22] that none of those oc-

7 2c2 ,\2 they are naturally expressed in different coordinate systems.
X exp{ - L_ |_2 ( —) ] (5.22)
0

g
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currences violates Maxwell's equations, causality, or relativlossless medium. The general definition of momentum in
ity. Similar observations of propagation at the group velocitySec. 2 of[24] is similar to ours, but the definition of pseudo-
have been made for single-photon pulf23]. momentum involves simultaneous displacements of both
We find that the presence of loss causes a transfer @fpatial and material coordinates to give a quantity more akin
momentum and pseudomomentum from the electromagneti® our wave momentum. We believe, however, that the in-
field to the center-of-mass motion of the body where, forvariances with respect to the two coordinate systems, and the
convenience, a rigid body is assumed. As this motion is quité0rresponding momenta, are generally distinct and should be
distinct from, and slower than, that of the electromagnetidréated separately. Their combination to form the wave mo-
field, the transferred contributions to the momentum and"€ntum is valid only in special conditions, as discussed in

pseudomomentum densities prevent meaningful definitions€C: |V D. Nevertheless, with the electrostrictive term re-

of velocities for either of these momenta in the presence oanVEd’ expressiofll0.9 in [24] for the momentum associ-

loss. However, the center-of-mass contribution cancels frorﬁm3d .W'th a travelling wave agrees with our wave momentum
ensity (4.48, rather than our momentum densit$.42.

he wave momentum density. n ntl meaningf : X
the wave momentum density. Consequently a meaning Iso, it appears fron{10.4) and the equation following it in

definition of a velocity of wave momentum in the presence g
of loss can be formed from the ratio of its flow and density.[24]' that momentum can be transfer_red from a light wave to
a lossless dielectric with no boundaries, contrary to our con-

For a monochromatic wave, this velocity is found to have a~, =~ .
very simple relationship, Eq4.35), to the energy velocity in C|U$IOI’IS. We are thus unable to make_ an unambiguous com-
the presence of loss. parison of tr_le two formalisms. We belleve,. howev_er, that the
The center-of-mass motion disappears in the absence geatment given in the present paper provides a rigorous and
loss, and in this situation it may be expected that meaningfuﬁjetalled account O.f the propagatlon of .electromaglnetlc mo-
velocities can be defined for all three kinds of momentum.mentum through dispersive and absorbing dielectrics.
However, we have shown that the momentum velog@y3
and the pseudomomentum veloci®.46) suffer from un- ACKNOWLEDGMENTS

physical infinities, and the latter from negative values, which D.F.N. gratefully acknowledges support of this work un-

are difficult to interpret. These behaviors seem to be consg;., National Science Foundation Grant No. DMR-9315907.
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damping limit. As we d|scus_s "?ﬁef EQ425) momentum - \yq acknowledge contributions by Dr. M. S. Kim to the early
transfer to the medium remains in the limit of zero loss if thestages of the work.
size of the medium is made infinite before the damping is
removed. Further, it would be surprising for a velocity to be

meaningless in the presence of ever-diminishing loss and

then to become suddenly meaningful in the zero-loss limit. e consider reasonable values for the parameters of a
More generally, the presence of dispersion without l0ss VioGaussian pulse envelope that justify the approximations

lates the Kramers-Kronig relatiof8]; the momentum is evi-  made in Sec. V. For a central frequency in the visible region
dently peculiarly sensitive to such a violation. The wave mo-of the spectrum, we take
mentum velocity remains well behaved in the lossless limit
when both it and the energy velocity become the group ve- we=3x101% s71 (A1)
locity. The existence of the wave momentum velocity in both
absorbing and nonabsorbing dielectrics, in the absence @nd a much smaller frequency width is typically
valid momentum and pseudomomentum velocities, is addi-
tional evidence for the uniquely important role of wave mo- c/l~3x10° st (A2)
mentum in interactions within homogeneous bodies.

The monochromatic wave treated in Sec. IV gives rise tol he spatial length of the pulse is thus
steady-state energy and momentum densities, except that the _,
center-of-mass momentum grows linearly with the time as |~10"% m. (A3)
g;:;;;ztjlm ?hle:ﬁ)e/dsiﬂr%?lll?ﬁetg;Zess?fncgﬁlrzs%ligdvﬁvge he refractive index and extinction coefficient are taken to
V gives an additional perspective to the transfer of momen—be
tum. Here the pulse is assumed to be short compared to the
characteristic decay length of the medium, and the loss is
taken into account only in the decay of the initial pulse andy,, intensity decay length is then
the transfer of its momentum to the medium. In contrast to
the monochromatic wave, all of the densities are now time Lo=Cl2woko~10"1 m, (A5)
dependent, and all of the initial field momentum is trans-
ferred to the center of mass after a sufficiently long time.which is conveniently much larger than the length of the
Once again only the energy and wave momentum velocitiegulse. The optical pulse has effectively totally dissipated af-

can be defined, and, because of the restricted inclusion @ér a propagation distan@eof 1 m, and, for this distance,
loss, both propagate at the group velocity.

Finally we comment on the relation of our calculations to 2Ckoz/1?~3%x10° s, (AB)
an earlier paper on the conservation of momentum and
pseudomomentum, which considers only a nondispersive anahich is negligible compared te,.

APPENDIX

7o~15 and ky=5x10"". (A4)
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