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Propagation of electromagnetic energy and momentum through an absorbing dielectric

R. Loudon and L. Allen
Department of Physics, Essex University, Colchester CO4 3SQ, England

D. F. Nelson
Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609

~Received 22 August 1996!

We calculate the energy and momentum densities and currents associated with electromagnetic wave propa-
gation through an absorbing and dispersive diatomic dielectric, which is modeled by a single-resonance Lor-
entz oscillator. The relative and center-of-mass coordinates of the dielectric sublattices and the electromagnetic
field vectors are treated as dynamical variables, while the dielectric loss is modeled by a phenomenological
damping force. The characteristics of the energy propagation agree with previous work, including the form of
the energy velocity. The treatment of momentum propagation extends previous work to lossy media, and it is
found that the damping plays an important role in the transfer of momentum from the electromagnetic field to
the center of mass of the dielectric. We discuss the significances of the momentum, the pseudomomentum, and
their sum, the wave momentum. For each of these quantities we derive the density, the current density, and the
appropriate conservation or continuity equation. The general expressions are illustrated by applications to a
steady-state monochromatic wave and to an excitation in the form of a localized Gaussian pulse. The velocities
associated with propagation of the various kinds of momentum are derived and discussed.
@S1063-651X~97!04901-5#

PACS number~s!: 42.25.Bs, 03.40.2t, 03.50.De, 41.20.Jb
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I. INTRODUCTION

The nature of electromagnetic energy and the charact
tics of its propagation through dielectric media have be
studied since the early years of electromagnetic theory.
propagation through the simplest kind of linear, isotrop
and homogeneous medium, the energy densityW and energy
current density, or Poynting vectorS are routinely treated in
standard texts@1,2#. The forms of these energy densities a
their conservation law have also been evaluated for m
more general dielectric media@3#. For propagation through
absorbing or scattering materials, the classic treatmen
electromagnetic wave propagation, and particularly the id
tification of the several distinct velocities that are associa
with an optical pulse, was provided by Sommerfeld and B
louin @4#. The detailed theory for lossy dielectrics is qui
complicated, but the main features of the energy density
current, and of energy propagation, are correctly predicted
a simple calculation@5#, based on the standard model
electromagnetic waves in a Lorentzian dielectric with
single resonance. The essential feature of this theory is
inclusion of contributions to the total energy densityW and
energy current densityS of the optical excitation from both
the electromagnetic field and the dielectric medium.

It is interesting to determine whether there is an ana
gous theory for electromagnetic momentum propagation
lossy medium, and this is the primary purpose of the pres
paper. Such an inquiry is particularly topical because rec
work @6# on dispersive, but lossless, dielectrics has propo
a resolution of the long-standing Minkowski-Abraham co
troversy concerning the correct expressions for the dens
of electromagnetic momentum and current, denoted here
G andT, respectively~see@7,8# for reviews!. These densities
are well understood for electromagnetic fields in free spa
551063-651X/97/55~1!/1071~15!/$10.00
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where the momentum density is a vector quantity prop
tional to the energy current,G5S/c2, and the momentum
current density is a second rank tensor, or 333 matrix, re-
lated to the Maxwell stress tensor@1,2,9#. For the electro-
magnetic momentum in material media, it is necessary
take account of contributions from both the electromagne
field and the dielectric medium. The momentum current i
lossless dielectric was obtained by this approach as a m
fied form of the Maxwell stress tensor. In addition, the n
tures of the momentumlike quantities that have been defi
for the coupled system of electromagnetic field and dielec
material, including the densities proposed by Abraham a
Minkowski, were identified@6#.

The controversy has always revolved around a linear li
wave for which deformation of the dielectric medium is i
relevant, but a key ingredient of its recent resolution is
inclusion of deformation of the medium. This necessita
the use of both spatial~Eulerian! and material~Lagrangian!
coordinates, and it allows the deduction of conservation la
from Noether’s theorem. Thus the momentum conserva
law follows from invariance to displacements of the spat
coordinates~homogeneity of free space!, and the pseudomo
mentum conservation law follows from invariance to d
placements of the material coordinates~homogeneity of the
material medium!. This approach@6# found the electromag-
netic momentum densityGm to be«0E3B, close to, but in
general different from, the Abraham form«0m0E3H. It also
found the pseudomomentum densityGpsm to beP3B plus a
dispersive term. Thus the sumG of the momentum and
pseudomomentum densities, which we call thewave momen-
tum, is the generalization of the Minkowski momentu
D3B to include dispersion. However, the Minkowski mo
mentum was proposed as being the ordinary moment
while this derivation shows instead that it is the sum of
1071 © 1997 The American Physical Society
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1072 55R. LOUDON, L. ALLEN, AND D. F. NELSON
dinary momentum and pseudomomentum. The name ‘‘w
momentum’’ was introduced for this reason.

While the inclusion of material deformation has played
essential role in the clarification of what is momentum a
what is pseudomomentum, it also acts as a barrier to sim
physical understanding. The aim of the present paper is
to find simplified versions of the conservation laws for m
mentum and pseudomomentum, even after generalizatio
previous work to include loss. This is achieved by the si
plification of the dielectric to a nonmagnetic diatomic crys
with cubic isotropy, essentially the single-resonance Lore
model. The ions are assumed to be coupled to the elec
magnetic field only by an electric-dipole interaction.

Before proceeding to the main calculations, we prese
simplified discussion of energy and momentum propaga
in Sec. II. An improved version of previous calculations
the energy continuity equations and the velocity of ene
propagation@5# leads to essentially the same results as
fore, but our method facilitates parallel discussions of
momentum propagation characteristics. It is found, howe
that the propagation of momentum involves both the cen
of mass and relative coordinates of the diatomic dielect
whose proper treatment requires a Lagrangian formulat
Thus it is shown in Sec. III that the momentum density a
current obey a conservation law when the center-of-m
momentum is included, but that the pseudomomentum,
hence the wave momentum, suffer dissipation on accoun
the dielectric loss. The various electromagnetic densities
rived in Secs. II and III are evaluated for a steady-st
monochromatic wave in Sec. IV, where the velocities
propagation of energy and wave momentum are derived,
for an optical pulse in Sec. V. The results are discusse
Sec. VI.

II. SIMPLE THEORY OF ELECTROMAGNETIC ENERGY
AND MOMENTUM PROPAGATION

The present section is devoted to a derivation of so
basic results for electromagnetic fields in a dielectric mate
treated in the Lorentz model. We present a simple deriva
of the equations that describe the propagation of energy,
show that the corresponding description of moment
propagation cannot be obtained by so simple a theory.
detailed derivations of the equations that describe mom
tum propagation and the identification of the different ch
acters of the momentumlike contributions are given care
consideration in Sec. III.

A. Basic equations

The fundamental energy and momentum properties
electromagnetic fields in matter are governed by Maxwe
equations and by the equations of motion for the matter.
consider a nonmagnetic dielectric material that has no
charges or currents. The Maxwell-Lorentz forms of the eq
tions in conventional notation and Syste`me International~SI!
units are then

“•E5r/«0 , ~2.1!

“•B50, ~2.2!
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“3E52
]B

]t
, ~2.3!

1

m0
“3B5 j1«0

]E

]t
, ~2.4!

where the fields are functions of position and tim
E[E~r ,t!, and so on. The bound charge and current de
ties,r and j , respectively, are also functions of position a
time; they can be expressed in terms of the dielectric po
izationP as

r52“•P ~2.5!

and

j5
]P

]t
. ~2.6!

The electric displacement is defined in the usual way,

D5«0E1P, ~2.7!

and the magnetic field is given by

H5B/m0 . ~2.8!

Note that in the view implicit in these equations,E andB are
the fundamental electromagnetic fields, whileP describes the
response of the matter, and Eqs.~2.7! and~2.8! are constitu-
tive equations forD andH.

We consider a polar, diatomic, cubic, crystal lattice
which the relative spatial displacement field of the two io
in the unit cell is denoteds[s~r ,t!. The long-wavelength
optic modes of vibration have a basic threefold degener
which is lifted by the long-range electrical forces to form
twofold-degenerate transverse mode and a nondegen
longitudinal mode@10#. Then, if the frequency of the trans
verse mode is denotedvT and its damping rate is denotedG,
the standard form of the Lorentz equation for thei th Carte-
sian component of the internal coordinate of the ionic mot
is

ms̈i1mG ṡi1mvT
2si5§Ei . ~2.9!

Here m is the reduced mass density of the two ions,
massesM1 andM2, in the primitive unit cell of volumeV,

m5
M1M2

V~M11M2!
~2.10!

and the charge density§ associated with the internal motio
is given by

§5e/V, ~2.11!

wheree and2e are the charges on the two kinds of ion. Th
polarization is expressed in terms of the internal coordin
by

P5§s. ~2.12!
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B. Energy propagation

The flow of electromagnetic energy through the dielec
is determined by the energy current density, or Poynting v
tor, given by

Sem5E3B/m0 ~2.13!

for the cubic isotropic material assumed here. It is straig
forward to show with the use of Eqs.~2.3! and ~2.4! that

]

]r i
~Sem! i1

]

]t
Wem52E• j , ~2.14!

where the repeated indexi is summed over the Cartesia
coordinatesx, y, andz, and

Wem5 1
2«0E

21 1
2m0H

2 ~2.15!

is the usual electromagnetic energy density. Equation~2.14!
expresses the continuity of the electromagnetic energy,
the term on the right represents the rate of loss of ene
from the field by transfer to the dielectric.

Multiplication of ~2.9! by ṡi gives

ms̈i ṡi1mG ṡi
21mvT

2si ṡi5§Eiṡi5E• j , ~2.16!

where Eqs.~2.6! and ~2.12! have been used, similar to
calculation in@4#. The rate of loss on the right of the ele
tromagnetic energy continuity equation~2.14! is thus bal-
anced by the rate of gain of energy represented by the t
on the right of Eq.~2.16! for the dielectric lattice mode. The
sum of Eqs.~2.14! and ~2.16! can be written in the form of
an energy continuity equation for the coupled electrom
netic field and dielectric lattice,

]Si
]r i

1
]W

]t
52mG ṡ2, ~2.17!

where the total-energy current density

S5Sem5E3B/m0 ~2.18!

is the same as the electromagnetic current density~2.13!, but
the total energy density is

W5 1
2 $«0E

21m0H
21mṡ21mvT

2s2%. ~2.19!

The excitation of the dielectric lattice, that is of the Loren
zian oscillator or optic mode, thus makes no explicit con
bution to the energy current density. The lattice do
though, have an implicit effect via the scaling of the ratio
the magnetic and electric fields by the complex refract
index of the medium@see Eq.~4.10!#. However, the energy
density explicitly contains the kinetic and potential energ
of the optic vibrational mode in addition to the electroma
netic energy density~2.15!. The term on the right of Eq
~2.17! represents the rate of loss of energy density from
coupled field-lattice system by the optic mode damping.

C. Momentum propagation

The flow of electromagnetic momentum is determined
the momentum current density, whose components are g
by @1,2,6,9,10#
c
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~Tem! j i52«0EjEi1
1
2«0E

2d j i2
BjBi

m0
1

B2

2m0
d j i .

~2.20!

This quantity is usually identified as the negative of the Ma
well stress tensor@1,2#, but occasionally as the Maxwe
stress tensor@9#. The momentum continuity equation for th
electromagnetic field is obtained from Maxwell’s equatio
by forming the vector products of«0E with Eq. ~2.1!, B/m0
with Eq. ~2.2!, E with Eq. ~2.3!, andB with Eq. ~2.4!, and
then adding the four equations. The result after use of s
dard vector operator identities is

]

]r i
~Tem! j i1

]

]t
~Gem! j52rEj2~ j3B![2F j ,

~2.21!

where

Gem5«0E3B ~2.22!

is the electromagnetic momentum density. Equation~2.21!
expresses continuity of electromagnetic momentum. T
terms on the right represent the rate of loss of momen
from the field by transfer to the dielectric, in the form o
minus the usual Lorentz force density, denotedF j .

The transfer of momentum from the electromagnetic fi
implies that the dielectric as a whole is set into motion. T
internal relative displacement fields is itself invariant under
a uniform displacement of the crystal, and cannot theref
carry momentum. The dielectric momentum is carried by
motion of the spatial displacement fieldR[R~r ,t! defined by
the position of the center of mass of the two ions in the u
cell. A treatment of the propagation of momentum throu
the dielectric thus requires a theoretical framework that
cludes both the relative and center-of-mass coordinatessand
R; this is provided by the Lagrangian formalism presented
Sec. III.

The effect of the dissipation term in the internal equati
of motion ~2.9! is to remove energy from the optic modes
vibration. The sink for this energy is provided by a reservo
whose nature is determined by the microscopic mechan
of the dissipation. For example, anharmonic forces in
lattice transfer the optic-mode energy into continuous dis
butions of other vibrational modes which are not direc
coupled to the electromagnetic field. Thus an initial exci
tion of the coupled electromagnetic field and optic mod
decays to a steady state in which all of the energy is tra
ferred to the reservoir. This transfer has implications for b
the momentum and the kinetic energy associated with
motion of the dielectric crystal.

Suppose that the initial excitation hasN quanta of wave
vectork and frequencyv per unit volume. The magnitude o
the momentum density acquired by the dielectric crystal a
whole, when all of the energy has been transferred to
reservoir, is

MṘ5N\k5N\v/c, ~2.23!

whereM is the dielectric mass density,

M5~M11M2!/V, ~2.24!
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1074 55R. LOUDON, L. ALLEN, AND D. F. NELSON
and the relation between the frequency and wave vector
been taken in its free-space form, for the purpose of an or
of-magnitude estimate. Clearly it is important to include t
center-of-mass momentum of the crystal in any theory
momentum propagation through an absorbing dielectric.

The transfer of momentum to the dielectric must be
companied by a growth in its kinetic energy density, who
value for the momentum density given by Eq.~2.23! is

MṘ2

2
5N\v

N\v

2Mc2
. ~2.25!

The rest-mass energy densityMc2 of the crystal is always
very much larger than the initial energy densityN\v. The
crystal kinetic energy is thus completely negligible compa
to N\v. This justifies the neglect of center-of-mass moti
in the theory of energy propagation given in Sec. II B, d
spite its importance in the theory of momentum propagati

III. LAGRANGIAN THEORY OF ELECTROMAGNETIC
MOMENTUM PROPAGATION

This section is devoted to a rigorous derivation of t
various momentum densities associated with the propaga
of electromagnetic waves through absorbing dielectrics.
basic dielectric model is the same as that used in Sec. II,
it is necessary to generalize the model to include center
mass motion in order to describe momentum propagation
is also necessary to distinguish the contributions of mom
tum and pseudomomentum. The continuum mechanics b
ground to the calculations is described in detail in Ref.@10#.
It is assumed throughout that the dielectric material fills
of space; the effects of crystal boundaries are excluded f
the calculations.

A. Lagrangian formulation

The system of dielectric material (M ) and electromag-
netic field (F) coupled by an electric-dipole interaction (I ) is
described by a Lagrangian density

L5LM1LI1LF , ~3.1!

where the Lagrangian itself is formed by integration over
Lagrangian density in the usual way.

The Lagrangian density of the electromagnetic field is

LF5
«0
2
E22

1

2m0
B2, ~3.2!

where the electric and magnetic fields are determined by
scalar potentialf and the vector potentialA in the usual
way,

E52“f2
]A

]t
~3.3!

and

B5“3A. ~3.4!

The interaction Lagrangian density is
as
r-
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-
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e

LI5 j•A2rf, ~3.5!

where the charge and current densities are related to th
electric polarization by Eqs.~2.5! and~2.6!. However, when
the center-of-mass motion is included, the latter express
should be augmented by inclusion of the Ro¨ntgen current
@11#, to give a total current density

j5
]P

]t
1“3~P3Ṙ!, ~3.6!

whereR is again the continuum center-of-mass coordina
The interaction Lagrangian density~3.5! can be converted
with the use of this expression to

Ll5P•~E1Ṙ3B!, ~3.7!

where some perfect space and time derivative terms, wh
make no contribution to the Lagrange equations of moti
have been discarded@10#. The material Lagrangian densit
for a rigid body is

LM5 1
2M Ṙ21 1

2mṡ
22 1

2mvT
2s2, ~3.8!

where the dielectric parameters are as defined in Sec. II.
theory also needs to include a term that allows for damp
of the internal motion at a rate proportional toG. This is
conveniently implemented by a Rayleigh dissipation fun
tion of the form

R5 1
2 mG ṡ2, ~3.9!

which is incorporated into the Euler-Lagrange equations
an appropriate additional term@12#.

The equations of motion for the electromagnetic and m
terial field variables are obtained by the standard Lagrang
procedures. Thus the Maxwell-Lorentz equations~2.1! and
~2.4! are rederived straightforwardly, while Eqs.~2.2! and
~2.3! are satisfied automatically from the definitions~3.3!
and ~3.4! of the fields in terms of the potentials. It shou
however be noted that the Ro¨ntgen term in the current den
sity ~3.6! causes a generalization of relation~2.8! between
magnetic field and magnetic induction to@see, for example,
Eq. ~76.11! of Ref. @2##

H5
B

m0
2P3Ṙ. ~3.10!

The new term is a function of both the internal relativ
displacement coordinate and the center-of-mass coordi
of the dielectric material.

For the dielectric spatial displacement variables, the eq
tion of motion for the relative position of the two ions in th
unit cell is obtained with the use of Eqs.~3.7!–~3.9! as

ms̈i1mG ṡi1mvT
2si5§„Ei1~Ṙ3B! i…, ~3.11!

which is identical to Eq.~2.9! except for the addition of the
term proportional to the center-of-mass velocityṘ. The
equation of motion for the continuum center-of-mass coor
nate is obtained similarly as
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MR̈j2§si
]

]r j
„Ei1~Ṙ3B! i…2§

d

dt
~s3B! j50.

~3.12!

A more convenient form of this equation is found after co
siderable manipulation@10#, using Eqs.~ 2.2!, ~2.5! and~3.6!,
to be

MR̈j2
]

]r i
$§„Ej1~Ṙ3B! j…si%5rEj1~ j3B! j5F j .

~3.13!

The significances of the terms on the left are clarified
their contributions to the momentum densities defined in S
III B below.

As discussed in connection with Eq.~2.25!, the kinetic
energy of the dielectric is negligible compared to the ene
densities associated with the electromagnetic field and
optic mode vibration of the lattice. The contribution of th
center-of-mass motion to the Lorentz force on the right-ha
side of~3.11! is also small, asṘB is of orderṘE/c, which is
certainly much smaller thanE. With terms inṘ removed, the
Lagrangian theory reproduces the results of Sec. II B as
~3.11! reduces to Eq.~2.9!, and the Maxwell equations ar
unchanged. The energy continuity equation~2.17! and the
energy densities given in Eqs.~2.18! and ~2.19! thus con-
tinue to hold. The derivations that follow consider the mo
subtle problems and distinctions associated with the pro
gation of momentum and pseudomomentum through the
sorbing dielectric.

B. Momentum conservation

The law of momentum conservation is a consequence
the invariance of the laws of physics to arbitrary infinitesim
displacements of the spatial coordinates. The momentu
thus defined with respect to the Maxwell equations~2.1!–
~2.4! and the center-of-mass equation~3.13!. The continuity
equation~2.21! for the electromagnetic momentum, which
based entirely on Maxwell’s equations, therefore rema
valid. The Lorentz force densitiesF j on the right-hand sides
of Eqs.~2.21! and~3.13! are equal and opposite, demonstr
ing the action and reaction of the forces between the elec
magnetic and material parts of the coupled system. Addi
of these equations, using definition~2.12! of the polarization,
gives

]

]r i
~Tm! j i1

]

]t
~Gm! j50, ~3.14!

which is the conservation law for the momentum of the fie
material system. Here

~Tm! j i52„Ej1~Ṙ3B! j…Pi1~Tem! j i ~3.15!

is the momentum current density, and

Gm5M Ṙ1Gem ~3.16!

is the momentum density of the coupled field and mater
Expressions for the electromagnetic contributions to the m
mentum current density and the momentum density are g
in Eqs.~2.20! and~2.22!, respectively. A tensor contributio
-

y
c.
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with the same magnitude as the center-of-mass kinetic
ergy has been omitted from the momentum current den
~3.15! in accordance with the discussion that follows E
~2.25!.

It should be noted that the equation of motion~3.11! for
the internal coordinate plays no role in the above derivati
on account of the inability of the relative coordinate to ca
momentum@6#. As the dissipation described by Eq.~3.9! acts
only on the internal coordinate, the absence of this coo
nate from the derivation of Eqs.~3.14!–~3.16! accounts for
the lack of damping terms in these results. The fulfilment
momentum conservation in the presence of energy diss
tion, as described by the term on the right-hand side of
~2.17!, is of course a common occurrence in mechanics.

The momentum density~3.16! is clearly separated into a
contributionM Ṙ from the center-of-mass motion and a co
tribution «0E3B from the electromagnetic field. The latte
differs from the Abraham form«0m0E3H on account of the
generalized relation~3.10! between the magnetic field an
the induction. It is seen that, in contrast to the magne
inductionB, which is purely a property of the electromag
netic field, the magnetic fieldH contains a contribution tha
depends on the material internal coordinate contained inP.
The occurrence ofB rather thanH ensures that the electro
magnetic momentum density is properly independent of
material variables.

The total momentum is obtained by integration ofGm~r ,t!
over all space, and this quantity is conserved for a clo
system with no flow of momentum through its boundarie
Thus integration of Eq.~3.14! over the effectively-infinite
dielectric material gives

]

]t E dr Gm~r ,t !50, ~3.17!

provided thatTm~r ,t! vanishes atr5`. The total momentum
is therefore conserved, and only its division between
electromagnetic field and the dielectric center-of-mass m
tion changes with time as, for example, in the propagation
a pulse of excitation through the crystal.

Although the material motion makes an important con
bution to the momentum density, its contribution to the m
mentum current density~3.15! is generally less important
ThusṘB is again of orderṘE/c, which is much smaller than
E, and, with the corresponding term removed, Eq.~3.15!
reduces to

~Tm! j i52EjPi1~Tem! j i . ~3.18!

C. Pseudomomentum

Pseudomomentum has been a much neglected quanti
continuum mechanics, and a regularly misinterpreted qu
tity in quantum mechanics. Quantum-mechanical treatme
of excitations in solids have often called\k the pseudomo-
mentum of an excitation quantum. This was shown to
wrong @6# on the basis of an unambiguous definition of t
pseudomomentum as the momentumlike quantity that is c
served by virtue of the homogeneity of the material body

Noether’s theorem@10# can be used with a Lagrangia
formulation to obtain a rigorous derivation of the pseudom
mentum conservation law for a homogeneous body. This
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1076 55R. LOUDON, L. ALLEN, AND D. F. NELSON
body of infinite, or at least large, extent compared to
interaction volume considered, so that any boundary effe
can be ignored. The invariance used in the application of
theorem to pseudomomentum is with respect to an arbit
infinitesimal displacement of the material coordinates o
point that moves with the dielectric. This is complete
analogous to the arbitrary infinitesimal displacement of
spatial coordinates, namely, the position of a point with
spect to the free-space vacuum, which is used with Noeth
theorem to obtain the momentum conservation law. Base
these definitions, it has been proved@6# that\k is a quantum
of the wave momentum, that is, of the sum of moment
and pseudomomentum. The pseudomomentum conserv
law derived below follows directly from the equations
motion, without the use of Noether’s theorem. However, N
ether’s theorem relates the conservation law to the invaria
property that gives rise to it and thus provides a firm iden
fication of the conserved quantity.

The pseudomomentum of the system considered her
not in fact a conserved quantity, because of the loss in
duced by the optic mode damping. The conservation eq
tion is thus replaced by a continuity equation. To find it fro
the equations of motion, we need to combine only the in
nal coordinate equation~3.11! and the version~3.12! of the
center-of-mass continuum equation, that is, the mate
equations. The electromagnetic field equations, which es
tially describe vacuum-based rather than material-ba
quantities, do not contribute. Thus addition of Eq.~3.11!,
after multiplication by]si /]r j , to Eq. ~3.12! gives a result
that can be written in the form of the continuity equation

]

]r i
~Tpsm! j i1

d

dt
~Gpsm! j5mG ṡ •

]s

]r j
, ~3.19!

where

~Tpsm! j i5$ 1
2m~ ṡ22vT

2s2!1~E1Ṙ3B!•P%d j i

~3.20!

is the pseudomomentum current density, with a term of
same magnitude as the center-of-mass kinetic energy a
neglected. The pseudomomentum density is given by

~Gpsm! j52MṘj2mṡ•
]s

]r j
1~P3B! j . ~3.21!

The term on the right-hand side of Eq.~3.19! represents the
rate of loss of pseudomomentum caused by damping of
optic mode. The total time derivative occurs in accordan
with the role ofGpsm as a momentum defined relative to th
moving medium.

The pseudomomentum current density simplifies wh
the term that includes the center-of-mass velocityṘ is ne-
glected, and Eq.~3.20! reduces to

~Tpsm! j i5$ 1
2 m~ ṡ22vT

2s2!1E•P%d j i . ~3.22!

However, the center-of-mass term in the pseudomomen
density~3.21! is comparable to the other terms, and it mu
be retained.
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D. Wave momentum

It is difficult, if not impossible, to observe the pseudom
mentum alone. Any interaction in a large homogeneous b
involves a conserved pseudomomentum but, because the
derlying vacuum space is also homogeneous, the interac
involves a conserved momentum as well. As similar qua
ties with identical dimensions, it is not surprising that t
momentum and pseudomomentum should combine toge
in summation to form the wave momentum. Such a summ
tion is valid when the deformation of the material body
negligibly small. Thus the experiments of Jones and
workers@13# on liquid dielectrics and of Gibsonet al. @14#
on semiconductors observed momentum transfers pro
tional to the refractive index, in agreement with the form
the unit of wave momentum\k in a nonabsorbing medium

The wave momentum current density and moment
density are denotedT andG, respectively. Dielectric defor-
mation is negligible in the vicinity of the optic mode fre
quency, and we may add the momentum conservation e
tion ~3.14! to the pseudomomentum continuity equati
~3.19!, to form the wave momentum continuity equation

]Tji

]r i
1

]Gj

]t
5mG ṡ•

]s

]r j
. ~3.23!

In this relation, the expression forTji is obtained by addition
of the approximations~3.18! and ~3.22! for small center-of-
mass velocity (Ṙ!c) as

Tji52EjDi1
1
2E•Dd j i2

BjBi

m0
1

B2

2m0
d j i

1 1
2 ~mṡ22mvT

2s21E•P!d j i , ~3.24!

and the expression forGj is obtained by addition of the
general results~3.16! and ~3.21! as

Gj5~D3B! j2mṡ•
]s

]r j
, ~3.25!

whereD is the electric displacement defined in Eq.~2.7!. It is
seen that the center-of-mass momentum cancels in the
mation of the wave momentum. The term on the right of E
~3.23! represents the rate of loss of wave momentum fr
the coupled field-lattice system caused by the optic m
damping.

The first four terms in the current density~3.24! have the
form of the negative of the Maxwell stress tensor in a diel
tric @1#. The remaining bracketted terms are additional,
their cycle-averaged contributions vanish in the examples
monochromatic and pulsed excitations of the system con
ered in Secs. IV and V, respectively~see also@6#!. The wave
momentum density~3.25! is the same as the Minkowski ex
pression plus a dispersive term. However, the Minkow
momentum was proposed as an expression for the mom
tum, not for the sum of momentum and pseudomomentum
embodied in the wave momentum. It is seen from the ab
expressions that, unlike the energy densities~2.18! and
~2.19!, neither the momentum current density~3.24! nor the
momentum density~3.25! separates into distinct electroma
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55 1077PROPAGATION OF ELECTROMAGNETIC ENERGY AND . . .
netic and material contributions, as the polarizationP, ex-
pressed in the form~2.12!, is a material variable.

The final results~3.23!–~3.25! can also be obtained di
rectly from the simple theory of Sec. II. Thus multiplicatio
of Eq. ~2.9! by ]si /]r j gives

ms̈i
]si
]r j

1mG ṡi
]si
]r j

1mvT
2si

]si
]r j

5E•
]P

]r j
, ~3.26!

where Eq.~2.12! has been used. Subtraction of Eq.~3.26!
from Eq. ~2.21! gives

]

]r i
$~Tem! j i1

1
2 m~ ṡ22vT

2s2!d j i %1E•
]P

]r j

1
]

]tH ~Gem! j2mṡ•
]s

]r j
J 1rEj1~ j3B! j5mG ṡ•

]s

]r j
.

~3.27!

It is not difficult to show with the use of Eqs.~2.3!, ~2.5!,
~2.6! and standard vector operator identities that

E•
]P

]r j
1rEj1~ j3B! j5

]

]t
~P3B! j1

]

]r j
~E•P!

2
]

]r i
~EjPi !. ~3.28!

Thus Eq.~3.27! can be written in the form of the continuit
equation~3.23! with the same definitions~3.24! and~3.25! of
the wave momentum densities. However, in contrast to
direct derivation, the Lagrangian formulation establishes
nature of the wave momentum. Its two distinct contributio
arising from the conserved momentum and the dissipa
pseudomomentum, are unambiguously identified. Their se
rate conservation and continuity properties are expresse
Eqs.~3.14! and ~3.19! respectively.

IV. MONOCHROMATIC WAVE

No assumptions have so far been made about the
dependences of the fields. We now evaluate the various
sities that have been derived in the previous two sections
the simple example of a monochromatic plane wave. T
cycle averages of the various energy and momentum de
ties associated with the electromagnetic fields and the in
nal motion of the crystal lattice are all independent of t
time in this example, and they have exponentially decay
spatial dependences. The electromagnetic and internal
of the system are thus subjected to a steady-state excita
and the monochromatic case usefully displays the full f
quency dependences of the energy and momentum dens
However, the constant supply of electromagnetic ene
which maintains the steady state, results in a center-of-m
momentum density that grows linearly with the time, pr
vided that the velocity remains nonrelativistic. The resu
derived in the present section are valid for arbitrarily stro
damping.
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A. Dielectric function

Consider a plane wave of frequencyv and wave vectork
that is propagated parallel to thez axis with its electric and
magnetic vectors oriented in the directions of thex and y
axes, respectively. The real electric field is written conve
tionally as a sum of positive- and negative-frequency con
butions,

E~z,t !5E1~z,t !1E2~z,t !

5E1~v!exp~2 ivt1 ikz!1E2~v!exp~ ivt2 ikz!.

~4.1!

HereE1~v! is the complex amplitude atz50, t50,

E2~v!5@E1~v!#* , ~4.2!

and a similar notation is used for the other fields. The a
plitude of the field atz50 is assumed to be time indepe
dent, and the model therefore provides for a constant sup
of energy at the coordinate origin. It is emphasized that
dielectric material is still assumed to fill all of space, and t
boundary condition atz50 does not imply the existence o
any real boundary.

It follows from Eq. ~2.9! that

si
1~v!5

§Ei
1~v!/m

vT
22v22 ivG

. ~4.3!

The electric displacementD~v! and the dielectric function
«~v! are defined by

Di
1~v!5«0«~v!Ei

1~v!5«0Ei
1~v!1Pi

1~v!, ~4.4!

and use of Eqs.~2.12! and~4.3! leads to the explicit expres
sion

«~v!511
§2

«0m

1

vT
22v22 ivG

. ~4.5!

The refractive indexh~v! and extinction coefficientk~v!
are defined in the usual way by

«~v!5@h~v!1 ik~v!#2, ~4.6!

and it follows from Eq.~4.5! that

h~v!22k~v!2511
§2

«0m

vT
22v2

~vT
22v2!21v2G2 ~4.7!

and

2h~v!k~v!5
§2

«0m

vG

~vT
22v2!21v2G2 . ~4.8!

The wave vector is given by the usual expression,

k5@h~v!1 ik~v!#v/c, ~4.9!

and the complex magnetic and electric field amplitudes
related by

B1~v!5@h~v!1 ik~v!#E1~v!/c. ~4.10!
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It is convenient to simplify the expressions that occur
the remainder of the section by removal of explicitv depen-
dence from the notation for the dielectric properties and fi
amplitudes.

B. Energy propagation

The total-energy current density~2.18! has only a nonzero
z component for the geometry assumed here, and its c
average is

^Sz&52«0chuE1u2e22vkz/c52«0chuE1u2e2z/L,
~4.11!

where

L5c/2vk ~4.12!

is the attenuation length, the distance after which the int
sity of an electromagnetic wave in the dielectric decays
1/e of its initial value. The total-energy density~2.19! has a
cycle average

^W&52«0S h21
2vhk

G D uE1u2e2z/L, ~4.13!

and we note that it is not possible to express this quan
entirely in terms of macroscopic electromagnetic functio
independent of the parameters of the optic mode. These
pressions for the total energy densities agree with a prev
derivation @5#. The cycle average of the energy dissipati
rate on the right of Eq.~2.17! is

2^mG ṡ2&524«0vhkuE1u2e2z/L52
2«0ch

L
uE1u2e2z/L.

~4.14!

The cycle average of the energy continuity equat
~2.17! takes the form

]^Sz&
]z

52^mG ṡ2&, ~4.15!

and it is readily verified from Eqs.~4.11!, ~4.12! and ~4.14!
that this relation is indeed satisfied. The energy that is c
stantly supplied atz50 in the example considered he
steadily drains into the reservoir associated with the diss
tion, until none is left for propagation distancesz@L. The
kinetic energy delivered to the dielectric material also gro
steadily in this example, but the material velocity is assum
to be always sufficiently small that the accumulated kine
energy is negligible.

Just as the ratio of the values of^Sz& and^W& in a lossless
dielectric gives the ray or energy velocity@10#, so the ratio of
the energy densities is taken to define the velocityve of
energy transport through the absorbing dielectric as

ve5
^Sz&

^W&
5

c

h1~2vk/G!
. ~4.16!

This can be rearranged in the form
d

le

n-
o

ty
,
x-
us

n

n-

a-

s
d
c

1

ve
5

1

vp
1

1

LG
, ~4.17!

where

vp5c/h, ~4.18!

is the phase velocity. Figure 1 shows the frequency dep
dence of the energy velocity in the vicinity of the transver
resonance for several values of the damping.

Although derived for a specific model, relation~4.17! be-
tween energy and phase velocities, decay length and da
ing rate is found to apply to a wide range of systems, inclu
ing the propagation of pulsed optical signals throu
dielectrics in regions of resonant absorption@15,16# and in
regions of resonant amplification@17#, self-induced transpar
ency in two-level atoms@18#, and energy transport in medi
containing randomly distributed scatterers@19#. A similar re-
lation is also valid for the propagation of ultrasonic signa
@20#. Each of these systems has a detailed theoretical tr
ment for the relevant attenuation or amplification proce
but the derived and measured propagation velocities ge
ally agree with the common form of energy velocity give
by Eq. ~4.17!.

C. Momentum propagation

Momentum. The momentum current density given by Eq
~3.18! and ~2.20! has three nonzero components for the g
ometry assumed here. The two transverse components
cycle-averaged values

^~Tm!xx&5«0~12h213k2!uE1u2e2z/L ~4.19!

and

^~Tm!yy&5«0~12h22k2!uE1u2e2z/L. ~4.20!

The cycle-averaged longitudinal component is

^~Tm!zz&5^~Tem!zz&5«0~11h21k2!uE1u2e2z/L.
~4.21!

FIG. 1. Frequency dependence of the energy velocity~4.16! for
the dielectric function~4.5! with §2/«0mv T

250.136; this gives the
ratio of longitudinal to transverse optic mode frequenc
vL/vT51.066 found in GaAs. The curves are labeled with the
propriate values ofG/vT .
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The momentum density is given by Eqs.~3.16! and ~2.22!,
and only the z component is nonzero, with the cycle
averaged value

^~Gm!z&5^MṘz&1^~Gem!z&5^MṘz&1
2«0h

c
uE1u2e2z/L.

~4.22!

The cycle averages of the continuity equation~2.21! for
the electromagnetic momentum and of the conserva
equation~3.14! for the momentum lead to the equalities

^Fz&52
]

]z
^~Tem!zz&52

]

]z
^~Tm!zz&5

]

]t
^MṘz&

~4.23!

for the monochromatic wave excitation considered here.
readily verified that the explicit expression for the cyc
averaged Lorentz force density, obtained from Eq.~2.21! as
^ jB&, agrees with that obtained from the momentum curr
density component given in Eq.~4.21!. The time dependenc
of the center-of-mass momentum density is thus obtained
integration of Eq.~4.23! as

^MṘz~z,t !&5~«0t/L !~11h21k2!uE1u2e2z/L,
~4.24!

and this quantity vanishes in the limit of a lossless dielec
asL→`. The dielectric material is here assumed to be a ri
body, and the total momentum transferred to the unit cro
sectional area at timet is obtained by integration of Eq
~4.24! as

E
0

`

dẑ MṘz~z,t !&5«0t~11h21k2!uE1u2. ~4.25!

The material center-of-mass momentum thus grows line
with the time, as momentum is steadily transferred from fi
to dielectric. The total momentum transfer vanishes in
limit of a lossless dielectric, and the apparent nonzero re
obtained from Eq.~4.25! for k→0 is an artifact of the prior
integration over an infinite extent of the medium. The co
servation law for the momentum density given in Eq.~3.17!
does not hold for the open system considered here, w
there is a steady input of electromagnetic energy and
mentum.

Pseudomomentum. The pseudomomentum current dens
given by Eq.~3.22! is the same for all three diagonal com
ponents, and its cycle average is

^~Tpsm! i i &5«0~211h22k2!uE1u2e2z/L, i5x,y,z.
~4.26!

The cycle average of the pseudomomentum density give
Eq. ~3.21! has only thez component

^~Gpsm!z&52^MṘz&1
2«0h

c S 211h21k21
2vhk

G D
3uE1u2e2z/L. ~4.27!
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The cycle average of the pseudomomentum dissipation
that appears on the right-hand side of Eq.~3.19! also has
only thez component

KmG ṡ
]s

]z L 52
4«0vh2k

c
uE1u2e2z/L

52
2«0h

2

L
uE1u2e2z/L. ~4.28!

The cycle average of the pseudomomentum continuity eq
tion Eq. ~3.19! thus takes the form

]

]z
^~Tpsm!zz&2

]

]t
^MṘz&5 KmG ṡ

]s

]z L , ~4.29!

and this is seen to agree with Eqs.~4.23! and~4.24! when the
cycle averages~4.26! and ~4.28! are substituted.

Wave momentum. The cycle averages of the various wa
momentum densities are now obtained by summation of
momentum and pseudomomentum contributions, and the
sults are

^Txx&52^Tyy&52«0k
2uE1u2e2z/L ~4.30!

and

^Tzz&52«0h
2uE1u2e2z/L ~4.31!

for the wave momentum current density and

^Gz&5
2«0h

c H h21k21
2vhk

G JE1u2e2z/L ~4.32!

for the wave momentum density. The cycle average of
wave momentum continuity equation~3.23! takes the form

]^Tzz&
]z

5 KmG ṡ
]s

]z L , ~4.33!

and it is readily verified from Eqs.~4.12!, ~4.28!, and~4.31!
that this relation is indeed satisfied.

As with the energy velocity~4.16!, it is possible to define
a velocity vwm of wave momentum transport through th
absorbing dielectric in the direction of thez axis as

vwm5
^Tzz&

^Gz&
5

ch

h21k21~2vhk/G!
. ~4.34!

This can be rearranged in the form

1

vwm
5

1

vp
1

1

LG
1

k2

ch
5

1

ve
1

k2

ch
, ~4.35!

with a term additional to expression~4.17! for the energy
velocity. The wave momentum velocity is thus in gene
smaller than the energy velocity, and Fig. 2 shows the
quency dependence of the difference between the two.
differences are small for the chosen parameters, but t
could be significant for larger damping.
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D. Limit of zero damping

It is instructive to consider the forms of the various de
sities defined above in the limit of zero dampin
@G→0,k~v!→0#, when the refractive index is obtained fro
Eq. ~4.7! as

h2511
§2

«0m

1

vT
22v2 . ~4.36!

Thus, for a lossless dielectric, the cycle-average energy
rent density~4.11! can be simply expressed in terms of t
phase velocity~4.18! as

^Sz&5
2«0c

2

vp
uE1u2. ~4.37!

The group velocity is defined by

c

vg
5

]

]v
~vh!5

c

vp
1
vp
c

§2

«0m

v2

~vT
22v2!2

, ~4.38!

and it is easily verified with the use of Eqs.~4.7! and ~4.8!
that

Lt
G→0

S h21
2vhk

G D5h
]

]v
~vh!5

c2

vpvg
. ~4.39!

The lossless limit of the cycle-average energy density~4.13!
is thus

^W&5
2«0c

2

vpvg
uE1u2. ~4.40!

The cycle-averaged dissipation rate~4.14! of course van-
ishes, and the energy velocity~4.16! becomes the same a
the group velocity in the limit of zero damping. This
shown as theG50 curve in Fig. 1.

In the absence of any material boundaries, and henc
any reflection of the incident electromagnetic wave, no m
mentum is transferred from the electromagnetic field to
center-of-mass motion of a lossless dielectric. ThusṘ can
everywhere be set equal to zero. The cycle-average mom
tum densities~4.21! and ~4.22! become

FIG. 2. Frequency dependence of the difference between w
momentum and energy velocities for the same parameters as F
-

r-

of
-
e

n-

^~Tm!zz&5«0S 11
c2

vp
2D uE1u2 ~4.41!

and

^~Gm!z&5
2«0
vp

uE1u2. ~4.42!

With no motion of the center of mass, it is possible to defi
a momentum velocity as

vm5
^~Tm!zz&

^~Gm!z&
5S 11

c2

vp
2D vp

2
. ~4.43!

The momentum densities both take their usual free-sp
values when the phase velocity is set equal toc, and the
momentum velocity also becomes equal toc.

The pseudomomentum densities~4.26! and~4.27! become

^~Tpsm!zz&5«0S 211
c2

vp
2D uE1u2 ~4.44!

and

^~Gpsm!z&5
2«0
vp

S 211
c2

vpvg
D uE1u2, ~4.45!

where the limit given in Eq.~4.39! is used in the latter. A
pseudomomentum velocity can thus be defined by

vpsm5
^~Tpsm!zz&

^~Gpsm!z&
5

c22vp
2

c22vgvp

vg
2
. ~4.46!

The pseudomomentum densities both vanish in free spa
The cycle-averaged wave momentum densities~4.31! and

~4.32! become

^Tzz&5
2«0c

2

vp
2 uE1u25

^Sz&
vp

~4.47!

and

^Gz&5
2«0c

2

vp
2vg

uE1u25
^W&
vp

. ~4.48!

The cycle-averaged dissipation rate~4.28! vanishes in the
limit of zero damping, and the wave momentum veloc
~4.34! reduces, like the energy velocity, to the group veloc

vwm5ve5vg . ~4.49!

This velocity can be expressed in the form

vwm5
^~Gm!z&vm1^~Gpsm!z&vpsm

^~Gm!z&1^~Gpsm!z&
~4.50!

of a sum of the momentum and pseudomomentum veloc
weighted by their respective densities. However, althou
the wave momentum velocity has the well-behaved fo
shown by theG50 curve in Fig. 1, the momentum velocit
~4.41! diverges at both the transverse and longitudinal f
quencies while the pseudomomentum velocity~4.46! di-

ve
. 1.
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verges at the longitudinal frequency and is negative there
at all higher frequencies. The unphysical aspects of th
velocities are discussed in Sec. VI.

V. OPTICAL PULSE

The example of a constantly sustained monochrom
wave treated in Sec. IV is somewhat untypical; the ene
and momentum densities are independent of the time, ex
for the center-of-mass momentum which increases linea
We now consider the more realistic example of a finite o
tical pulse which is initiated at the origin of coordinates, a
left to decay as the dissipation takes effect. It is difficult
treat the propagation of a general optical pulse. We h
choose a Gaussian envelope whose parameters have re
magnitudes that are convenient both for evaluation of
various integrals that occur in the theory and for illustrati
of the effects of dissipation. Specifically, the frequen
spread of the pulse is assumed to be much smaller tha
central frequency, and its spatial length is assumed to
much smaller than the optical attenuation length of the m
dium. The effects of loss are included only in the decay
the optical pulse and in the eventual transfer of its init
momentum to the medium. The results derived in the pres
section are thus valid only for weak damping.

A. Gaussian pulse

The coordinate axes are as defined in Sec. IV A. The
electric field associated with an optical pulse continues
have the form in the first line of Eq.~4.1!, but its positive-
frequency part is generalized to

E1~z,t !5
1

A2p
E
0

`

dv E1~z,v!exp~2 ivt1 ikz!,

~5.1!

and the negative-frequency part is given by the complex c
jugate expression. For a Gaussian pulse, we choose

E1~z,v!5
lE1

&c
expS 2

l 2~v2v0!
2

4c2 D , ~5.2!

where l is the spatial length of the pulse. Its central fr
quency is assumed to be very much larger than the freque
width,

v0@c/ l , ~5.3!

and possible numerical values of these and other param
are considered in the Appendix. It is also assumed that
refractive index and extinction coefficient satisfy the inequ
ity

h~v!@k~v!. ~5.4!

The refractive index is assumed to vary slowly over the f
quency spreadc/ l , so that it can be expanded aroundv0 as

vh~v!'v0h~v0!1~v2v0!
]„vh~v!…

]v U
v0
nd
se

ic
y
pt
y.
-

re
tive
e

its
e
-
f
l
nt

al
o

n-

cy
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e
-

-

5v0h01~v2v0!
c

vg
, ~5.5!

whereh0[h~v0! and the group velocityvg is defined in Eq.
~4.38!. The extinction coefficient is assumed to have neg
gible dispersion around its valuek0 at frequencyv0.

With these assumptions and approximations, and witk
given by Eq.~4.9!, the positive-frequency field~5.1! can be
put in the form

E1~z,t !5
lE1

2Apc
expH 2 iv0S t2 z

vp
D 2

v0k0z

c
1

k0
2z2

l 2

1
2ick0z

l 2 S t2 z

vg
D J

3E
2V0

`

dV expH 2 iVS t2 z

vg
D 2

l 2V2

4c2 J ,
~5.6!

where vp5c/h0 is the phase velocity, andV5v2V0 with

V05v02
2ck0z

l 2
. ~5.7!

As is discussed in the Appendix, we may assume that
second term on the right of Eq.~5.7! is much smaller than
the first, and with the inequality~5.3!, the lower limit on the
integral in Eq.~5.6! is effectively2`. The third and fourth
terms in the first exponent of Eq.~5.6! are correspondingly
negligible compared to the second term. The positi
frequency field thus takes the form

E1~z,t !5E1expH 2 iv0S t2 z

vp
D2

z

2L0
2
c2

l 2 S t2 z

vg
D 2J
~5.8!

to a very good approximation. It shows the familiar prope
ties of a phase that propagates with the phase velocit
magnitude that diminishes with the characteristic attenua
length 2L05c/v0k0 and a peak that propagates with th
group velocity. The corresponding magnetic field is obtain
from the Maxwell equation~2.3! and, with the various in-
equalities assumed above, it takes the approximate form

B1~z,t !5E1~z,t !/vp . ~5.9!

A good approximation to the relative spatial displacem
field of the two ions in the primitive cell is obtained from Eq
~2.9! as

s1~z,t !5
§

m~vT
22v0

2!
E1~z,t !. ~5.10!

B. Energy propagation

The cycle-average value of the total-energy current d
sity obtained from Eq.~2.18! with use of the fields~5.8! and
~5.9! is
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^Sz&5
2«0c

2

vp
uE1u2expH 2

z

L0
2
2c2

l 2 S t2 z

vg
D 2J .

~5.11!

The cycle-average energy density is obtained from Eq.~2.19!
with the use of the fields~5.8!–~5.10!, the low-damping form
~4.36! of the refractive index, and the group velocity~4.38!
as

^W&5
2«0c

2

vpvg
uE1u2expH 2

z

L0
2
2c2

l 2 S t2 z

vg
D 2J .

~5.12!

It is seen that the energy current density and the energy
sity are given by the zero-damping expressions for a mo
chromatic wave, Eqs.~4.37! and~4.40! respectively, but with
additional exponential factors that describe the effects of
damping to lowest order and the Gaussian shape of the p
envelope. The energy velocity defined as in Eq.~4.16! is the
same as the group velocity in the low-damping limit cons
ered here.

The energy continuity equation~2.17! is easily verified
for the Gaussian pulse. Thus the left-hand side of the co
nuity equation obtained with the use of Eqs.~5.11! and
~5.12! is

]^Sz&
]z

1
]^W&

]t
524«0v0h0k0uE1u2

3expH 2
z

L0
2
2c2

l 2 S t2 z

vg
D 2J ,

~5.13!

and the same expression is obtained for the right-hand
of Eq. ~2.17! with the use of Eqs.~4.8! and ~5.10! in the
low-damping limit.

C. Momentum propagation

Momentum. We consider only thezz component of the
momentum current density, whose cycle average obta
from Eqs.~3.18! and ~2.20! with the use of the fields~5.8!
and ~5.9! is

^~Tm!zz&5^~Tem!zz&

5«0S 11
c2

vp
2D uE1u2expH 2

z

L0
2
2c2

l 2 S t2 z

vg
D 2J .
~5.14!

The momentum density obtained from Eqs.~3.16! and~2.22!
is

^~Gm!z&5^MṘz&1^~Gem!z&

5^MṘz&1
2«0
vp

uE1u2 expH 2
z

L0
2
2c2

l 2 S t2 z

vg
D 2J .

~5.15!

The total field momentum at timet is therefore
n-
o-

e
lse

-

ti-

de

ed

E
2`

`

dẑ ~Gem!z&5
A2p«0lvg

cvp
uE1u2expH 2

vgt
L0

1
l 2vg

2

8c2L0
2 J .

~5.16!

The second term in the exponent can be neglected, as it
order 1023 for the parameter values given in the Append
The total field momentum is therefore approximately

E
2`

`

dẑ ~Gem!z&5
A2p«0lvg

cnp

uE1u2e2vgt/L0, ~5.17!

and the transfer of momentum from the electromagnetic fi
to the center-of-mass motion is characterized by the t
scaleL0/vg .

The relation~4.23! between the cycle-averaged densiti
of the Lorentz force and the various momenta and mom
tum currents is generalized to

^Fz&52
]

]z
^~Tem!zz&2

]

]t
^~Gem!z&5

]

]t
^MṘz&

~5.18!

for the pulse excitation. This equation can in principle
integrated to determine the time dependence of the cente
mass momentum, analogous to Eq.~4.24! for the monochro-
matic wave, but the integral cannot be performed analytica
for the Gaussian pulse. However, with the dielectric mate
assumed to be in the form of a rigid body, its total mome
tum at timet is again the main quantity of interest and th
can be calculated by integration of Eq.~5.18!. More straight-
forwardly, the pulse excitation satisfies the conditions
validity of Eq. ~3.17! and, if the center of mass is stationa
at time t50, the total center-of-mass momentum at timet is
simply obtained as

E
2`

`

dẑ MṘz&5E
2`

`

dẑ „Gem~ t !…z2„Gem~0!…z&

5
A2p«0lvg

cvp
uE1u2~12e2vgt/L0!.

~5.19!

Thus, after a time much longer thanL0/ng , the center of
mass acquires all of the momentum initially carried by t
electromagnetic field.

Pseudomomentum. The cycle average of thezz compo-
nent of the pseudomomentum current density is obtai
from Eq. ~3.22! with the use of Eqs.~2.12! and ~5.10! as

^~Tpsm!zz&5«0S 211
c2

vp
2D uE1u2

3expH 2
z

L0
2
2c2

l 2 S t2 z

vg
D 2J . ~5.20!

The cycle average of thez component of the pseudomome
tum density is similarly obtained from Eq.~3.21!, where only
the dominant terms are retained in the derivatives of the r
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tive spatial displacement field given by Eq.~5.10!. Then with
the use of the explicit expression for the group velocity giv
in Eq. ~4.38!,

^~Gpsm!z&52^MṘz&1
2«0
vp

S c2

vpvg
21D uE1u2

3expH 2
z

L0
2
2c2

l 2 S t2 z

vg
D 2J . ~5.21!

The cycle average of the pseudomomentum dissipation
on the right-hand side of Eq.~3.19! is

KmG ṡ
]s

]z L 52
2«0c

2

vp
2L0

uE1u2expH 2
z

L0
2
2c2

l 2 S t2 z

vg
D 2J .
~5.22!

Insertion of these expressions into the pseudomomen
continuity equation~3.19! reproduces essentially the sam
equation of motion for the center-of-mass momentum d
sity as is found from Eq.~5.18!.
Wave momentum. The cycle averages of the wave mome
tum densities are again obtained by addition of the mom
tum and pseudomomentum contributions, and the results

^Tzz&5
2«0c

2

vp
2 uE1u2expH 2

z

L0
2
2c2

l 2 S t2 z

vg
D 2J

~5.23!

and

^Gz&5
2«0c

2

vp
2vg

uE1u2expH 2
z

L0
2
2c2

l 2 S t2 z

vg
D 2J .

~5.24!

The cycle-averaged wave momentum dissipation rate
given by Eq.~5.22!, and it is easily verified that these ex
pressions satisfy the wave momentum continuity equa
~3.23!. The wave momentum velocity defined in Eq.~4.34! is
the same as the group velocity for the pulse excitation in
low-damping limit considered here.

VI. DISCUSSION

A recent study based on a Lagrangian formulation and
of Noether’s theorem has elucidated the meanings and
tionships of momentum, pseudomomentum, and wave
mentum@6#, but it has led to new questions that we ha
attempted to answer in the present work. If optical loss
added, how are the conservation laws of the various mom
tumlike quantities affected? Can the earlier general result
clarified by restriction to a linear light wave? Can velociti
of the various momentumlike quantities be defined, int
preted, and related to energy, group, and phase veloci
Some time ago, similar questions posed about energy pr
gation@5# were addressed, and these are reconsidered in
II. It is sensible to relate the queries concerning moment
and their solutions, to those for the energy.

The general conclusions of the recent study@6# can be
briefly summarized. Momentum conservation results, by N
ether’s theorem, from an invariance of the laws of physics
an arbitrary infinitesimal displacement of the spatial coor
n

te

m

-

-
n-
re
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n

e

e
la-
o-

s
n-
be

-
s?
a-
ec.
,

-
o
-

nates, which expresses the homogeneity of space. Simil
pseudomomentum conservation results from an invarianc
an arbitrary infinitesimal displacement of the material co
dinates that label a mass point, which expresses the ho
geneity of the material body. As there are only two frames
reference, there can be only two such conservation laws,
they are naturally expressed in different coordinate syste
However, they can be added after each has been specia
to the interaction under study. It is believed that pseudom
mentum cannot be observed alone because underlying e
homogeneous body lies the homogeneous space, and
mentum and pseudomomentum should be observed in s
mation inside a homogeneous body. The sum of the two
a light wave in a homogeneous body was shown to h
quanta of\k per photon, and for this reason the sum
named wave momentum. This property demonstrates the
mary importance of wave momentum, because\k often
plays a crucial role in determining phase-matching con
tions in wave and quantum interactions.

The energy, momentum, and pseudomomentum conse
tion laws are derived in Secs. II and III of the present pa
for a linear light wave in a homogeneous and isotropic
electric medium with a single group of three dipole-acti
optic modes. Optical loss enters through the equation of m
tion for the optic mode. The wave momentum conservat
law is found by addition of those for the momentum a
pseudomomentum. It is found that the energy loss does
affect the momentum conservation, a situation frequently
countered in mechanics. It does however affect the ene
pseudomomentum, and wave momentum conservation l
by adding a loss term and converting the conservation la
to continuity relations.

The momentum conservation law and the three continu
relations are examined in Sec. IV for a plane light wa
using cycle averaging. This permits analysis of the dens
the flow, and, where appropriate, the dissipation of th
quantities. A meaningful velocity for a wave is often foun
from the ratio of the cycle-averaged flow to the cycl
averaged density of a quantity. This is true for the ener
where it is called the energy or ray velocity. An interesti
generalization of the energy velocity for the lossy medium
reproduced in Sec. IV from previous work@5#. The energy
velocity can never exceed the velocity of light in vacuu
because of relativity. In the lossless limit this velocity b
comes the group velocity. It is worth remarking that the e
ergy and group velocities are distinct concepts, and are e
only for systems that conserve energy, momentum,
pseudomomentum. For nonlinear systems, this is only s
the cycle-averaged Lagrangian divided by the frequency
held constant during the differentiation in the calculation
the group velocity@10#.

The definition of the group velocity on the left of Eq
~4.38! remains valid for a lossy medium, withh~v! taken to
be the real refractive index as in Eq.~4.6!. The group veloc-
ity is not restricted to be smaller than the velocity of ligh
and its most basic interpretation is the velocity of the peak
a pulse. This peak velocity has been observed in some
markable experiments@21# to exceed the velocity of light,
become infinite, and then negative, which corresponds to
emergence of the peak of the pulse from a slab before
entry into it. It has been shown@22# that none of those oc
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currences violates Maxwell’s equations, causality, or rela
ity. Similar observations of propagation at the group veloc
have been made for single-photon pulses@23#.

We find that the presence of loss causes a transfe
momentum and pseudomomentum from the electromagn
field to the center-of-mass motion of the body where,
convenience, a rigid body is assumed. As this motion is q
distinct from, and slower than, that of the electromagne
field, the transferred contributions to the momentum a
pseudomomentum densities prevent meaningful definiti
of velocities for either of these momenta in the presence
loss. However, the center-of-mass contribution cancels f
the wave momentum density. Consequently a meanin
definition of a velocity of wave momentum in the presen
of loss can be formed from the ratio of its flow and densi
For a monochromatic wave, this velocity is found to have
very simple relationship, Eq.~4.35!, to the energy velocity in
the presence of loss.

The center-of-mass motion disappears in the absenc
loss, and in this situation it may be expected that meanin
velocities can be defined for all three kinds of momentu
However, we have shown that the momentum velocity~4.43!
and the pseudomomentum velocity~4.46! suffer from un-
physical infinities, and the latter from negative values, wh
are difficult to interpret. These behaviors seem to be con
quences of the delicate and unphysical nature of the z
damping limit. As we discuss after Eq.~4.25!, momentum
transfer to the medium remains in the limit of zero loss if t
size of the medium is made infinite before the damping
removed. Further, it would be surprising for a velocity to
meaningless in the presence of ever-diminishing loss
then to become suddenly meaningful in the zero-loss lim
More generally, the presence of dispersion without loss v
lates the Kramers-Kronig relations@2#; the momentum is evi-
dently peculiarly sensitive to such a violation. The wave m
mentum velocity remains well behaved in the lossless li
when both it and the energy velocity become the group
locity. The existence of the wave momentum velocity in bo
absorbing and nonabsorbing dielectrics, in the absenc
valid momentum and pseudomomentum velocities, is ad
tional evidence for the uniquely important role of wave m
mentum in interactions within homogeneous bodies.

The monochromatic wave treated in Sec. IV gives rise
steady-state energy and momentum densities, except tha
center-of-mass momentum grows linearly with the time
the constant energy supplied to the electromagnetic wav
dissipated in the medium. The Gaussian pulse treated in
V gives an additional perspective to the transfer of mom
tum. Here the pulse is assumed to be short compared to
characteristic decay length of the medium, and the los
taken into account only in the decay of the initial pulse a
the transfer of its momentum to the medium. In contras
the monochromatic wave, all of the densities are now ti
dependent, and all of the initial field momentum is tran
ferred to the center of mass after a sufficiently long tim
Once again only the energy and wave momentum veloc
can be defined, and, because of the restricted inclusio
loss, both propagate at the group velocity.

Finally we comment on the relation of our calculations
an earlier paper on the conservation of momentum
pseudomomentum, which considers only a nondispersive
-
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lossless medium. The general definition of momentum
Sec. 2 of@24# is similar to ours, but the definition of pseudo
momentum involves simultaneous displacements of b
spatial and material coordinates to give a quantity more a
to our wave momentum. We believe, however, that the
variances with respect to the two coordinate systems, and
corresponding momenta, are generally distinct and should
treated separately. Their combination to form the wave m
mentum is valid only in special conditions, as discussed
Sec. IV D. Nevertheless, with the electrostrictive term
moved, expression~10.5! in @24# for the momentum associ
ated with a travelling wave agrees with our wave moment
density ~4.48!, rather than our momentum density~4.42!.
Also, it appears from~10.4! and the equation following it in
@24#, that momentum can be transferred from a light wave
a lossless dielectric with no boundaries, contrary to our c
clusions. We are thus unable to make an unambiguous c
parison of the two formalisms. We believe, however, that
treatment given in the present paper provides a rigorous
detailed account of the propagation of electromagnetic m
mentum through dispersive and absorbing dielectrics.
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APPENDIX

We consider reasonable values for the parameters
Gaussian pulse envelope that justify the approximati
made in Sec. V. For a central frequency in the visible reg
of the spectrum, we take

v0'331015 s21 ~A1!

and a much smaller frequency width is typically

c/ l'331010 s21. ~A2!

The spatial length of the pulse is thus

l'1022 m. ~A3!

The refractive index and extinction coefficient are taken
be

h0'1.5 and k0'531027. ~A4!

The intensity decay length is then

L05c/2v0k0'1021 m, ~A5!

which is conveniently much larger than the length of t
pulse. The optical pulse has effectively totally dissipated
ter a propagation distancez of 1 m, and, for this distance,

2ck0z/ l
2'33106 s21, ~A6!

which is negligible compared tov0.
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